1. Моделирование экономических систем. Основные понятия и определения. Методы оптимальных решений лекции для экономистов


1. Моделирование экономических систем. Основные понятия и определения.

ЛЕКЦИИ

По дисциплине:

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

ПРЕПОДАВАТЕЛЬ Тимакин О.А.

Ростов-на-Дону 2012

СОДЕРЖАНИЕ

1. Моделирование экономических систем.

Основные понятия и определения

1.1. Возникновение и развитие системных представлений

1.2. Модели и моделирование. Классификация моделей

1.3. Виды подобия моделей

1.4. Адекватность моделей

2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ИХ РАСЧЕТА

2.1. Понятие операционного исследования

2.2. Классификация и принципы построения математических моделей

3. Некоторые сведения из математики

3.1. Выпуклые множества

3.2. Линейные неравенства

3.3. Значения линейной формы на выпуклом множестве

4. ПРИМЕРЫ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

4.1. Транспортная задача

4.2. Общая формулировка задачи линейного программирования

4.3. Графическая интерпретация решения задач линейного программирования

5. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

5.1. Общая и основная задачи линейного программирования

5.2. Геометрический метод решения задач линейного программирования

5.3. Графическое решение задачи распределения ресурсов

5.4. Симплексный метод

5.5. Анализ симплекс-таблиц

5.6. Решение транспортных задач

6. МЕТОДЫ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

И МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

6.1. Постановка задачи нелинейного программирования

6.2. Постановка задачи динамического программирования

Основные условия и область применения

6.3. Многокритериальная оптимизация

1.1. Возникновение и развитие системных представлений

Научно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы, обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.

В начале 80-х годов системность стала не только теоретической категорией, но и осознанным аспектом практической деятельности. Широко распространилось понятие того, что наши успехи связаны с тем, насколько системно мы подходим к решению возникающих проблем, а наши неудачи вызваны отсутствием системности в наших действиях. Сигналом о недостаточной системности в нашем подходе к решению какой-либо задачи является появление проблемы, разрешение же возникшей проблемы происходит, как правило, при переходе на новый, более высокий, уровень системности нашей деятельности. Поэтому системность не только состояние, но и процесс.

В различных сферах человеческой деятельности возникли различные подходы и соответствующие методы решения специфических проблем, которые получили различные названия: в военных и экономических вопросах - «исследование операций», в политическом и административном управлении - «системный подход», в философии «диалектический материализм», в прикладных научных исследованиях - «кибернетика». Позже стало ясно, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение», которое постепенно оформилось в науку, получившую название «системный анализ». В настоящее время системный анализ является самостоятельной дисциплиной, имеющей свой объект деятельности, свой достаточно мощный арсенал средств и свою прикладную область. Являясь по существу прикладной диалектикой, системный анализ использует все средства современных научных исследований - математику, моделирование, вычислительную технику и натурные эксперименты.

 Самая интересная и сложная часть системного анализа - это «вытаскивание» проблемы из реальной практической задачи, отделение важного от несущественного, поиск правильной формулировки для каждой из возникающих проблем, т.е. то, что называется «постановкой задачи».

Многие довольно часто недооценивают работу, связанную с формулировкой задачи. Однако многие специалисты полагают, что «хорошо поставить задачу - значит на половину ее решить». Хотя в большинстве случаев заказчику кажется, что он уже сформулировал свою проблему, системный аналитик знает, что предлагаемая клиентом постановка задачи является моделью его реальной проблемной ситуации и неизбежно имеет целевой характер, оставаясь приблизительной и упрощенной. Поэтому необходимо проверить эту модель на адекватность, что приводит к развитию и уточнению первоначальной модели. Очень часто первоначальная формулировка изложена в терминах не тех языков, которые необходимы для построения модели.

studfiles.net

Н.Е. Гучек доцент, кандидат технических наук конспект лекций

Факультет экономики и менеджмента

Кафедра «Финансы и менеджмент»

по дисциплине

Методы оптимальных решений

Направление подготовки: 080100 «Экономика»

Профили подготовки: «Финансы и кредит», «Бухгалтерский учет, анализ и

аудит», «Налоги и налогообложение», «Мировая экономика»

Форма обучения: очная

Тула 2012 г.

Конспект лекций подготовлен доцентом Н.Е. Гучек и обсужден на заседании кафедры «Финансы и менеджмент» факультета ЭиМ,

протокол № 1 от 31 августа 2012 г.

Зав. кафедрой __________________________Е.А. Федорова

Конспект лекций пересмотрен и утвержден на заседании кафедры «Финансы и менеджмент» факультета экономики и менеджмента

протокол № 1 от 30 августа 2013 г.

Зав. кафедрой __________________________Е.А. Федорова

Содержани

Лекция 1. Введение в теорию принятия решений 6

1.1. Основные понятия теории принятия решений 6

1.2. Математическая формализация 9

1.3. Современный этап развития теории принятия решений 14

Лекция 2. Математическое моделирование 17

2.1. Этапы построения математической модели 17

2.2. Понятия устойчивости, оптимизации и адекватности модели 20

2.3. Постановка и технология решения оптимизационных задач управления 23

Лекция 3. Линейное программирование 27

3.1. Линейное программирование как инструмент математического моделирования экономики 27

3.2. Примеры моделей линейного программирования 31

Лекция 4. Задачи линейное программирование 35

4.1. Формы задач линейного программирования и их эквивалентные преобразования 35

4.2. Геометрическая интерпретация задачи линейного программирования 40

Лекция 5. Симплексный метод решения задачи линейного программирования 43

5.1. Симплекс-метод 43

5.2. Симплексные таблицы и алгоритм решения задач 44

5.3. Применение симплексного метода в экономических задачах 46

Лекция 6. Метод искусственного базиса решения задачи линейного программирования 50

6.1. Метод искусственного базиса 50

6.2. Применение метода искусственного базиса 51

Лекция 7. Двойственные задачи линейного программирования 54

7.1. Двойственная задача для стандартной задачи 54

7.2. Основные теоремы двойственности 59

7.3. Метод одновременного решения пары двойственных задач 65

Лекция 1. Введение в теорию принятия решений 5

1.1. Основные понятия теории принятия решений 5

1.2. Математическая формализация 8

1.3. Современный этап развития теории принятия решений 12

Лекция 2. Математическое моделирование 16

2.1. Этапы построения математической модели 16

2.2. Понятия устойчивости, оптимизации и адекватности модели 19

2.3. Постановка и технология решения оптимизационных задач управления 22

Лекция 3. Линейное программирование 26

3.1. Линейное программирование как инструмент математического моделирования экономики 26

3.2. Примеры моделей линейного программирования 30

Лекция 4. Задачи линейное программирование 34

4.1. Формы задач линейного программирования и их эквивалентные преобразования 34

4.2. Геометрическая интерпретация задачи линейного программирования 38

Лекция 5. Симплексный метод решения задачи линейного программирования 41

5.1. Симплекс-метод 41

5.2. Симплексные таблицы и алгоритм решения задач 42

5.3. Применение симплексного метода в экономических задачах 44

Лекция 6. Метод искусственного базиса решения задачи линейного программирования 48

6.1. Метод искусственного базиса 48

6.2. Применение метода искусственного базиса 49

Лекция 7. Двойственные задачи линейного программирования51

7.1. Двойственная задача для стандартной задачи51

7.2. Основные теоремы двойственности55

7.3. Метод одновременного решения пары двойственных задач60

Лекция 8. Двойственные задачи линейного программирования64

8.1. Двойственный симплекс-метод64

8.2. Экономическая интерпретация объективно обусловленных оценок и исследование задачи распределения ресурсов73

Лекция 9. Транспортная задача82

9.1.Экономико-математическая модель транспортной задачи82

9.2. Нахождение первоначального базисного распределения поставок 84

9.3. Решение транспортной задачи методом потенциалов 85

Лекция 10. Особые случаи транспортной задачи91

10.1. Вырожденность в транспортных задачах 91

10.2. Открытая транспортная задача 93

Лекция 11. Элементы теории игр98

11.1. Основные понятия теории игр 98

11.2. Примеры игр 100

11.3. Классификация игр 105

Лекция 12. Игры двух лиц с нулевой суммой 107

12.1. Основные предположения для игр двух лиц с нулевой суммой 107

12.2. Смешанные стратегии 110

12.3. Аналитическое решение игры 22 112

12.4. Доминирование стратегий 115

Лекция 13. Графическое решение игр 117

13.1. Графическое решение игр размерности 2n 117

13.2. Графическое решение игр размерности m2 120

Лекция 14. Решение матричных игр с помощью линейного программирования 122

14.1. Связь матричных игр и линейного программирования 122

14.2. Алгоритм решения матричных игр с помощью линейного программирования 124

Лекция 15. Игры с природой 126

15.1. Критерии оптимальности в играх с природой 126

15.2. Пример игры с природой 128

Лекция 16. Применение теории игр в экономике 132

16.1. Кооперативные игры 132

16.2. Позиционные игры 135

Лекция 17. Целочисленное программирование 138

17.1. Математическая модель задачи 138

17.2. Графический метод решения 138

17.3. Метод Гомори и его применение в экономических задачах141

Лекция 18. Динамическое программирование 145

18.1. Общая постановка задачи динамического программирования145

Лекция 19. Применение динамического программирования в экономике 153

19.1. Задача об инвестировании предприятий153

19.2. Задача о замене оборудования158

Лекция 20. Модели сетевого планирования и управления 165

20.1. Сетевая модель и ее основные элементы 165

20.2. Порядок и правила построения сетевых графиков168

20.3. Одноцелевая детерминированная модель СПУ169

Лекция 21. Анализ и оптимизация сетевого графика 178

21.1. Оптимизация сетевого графика 178

21.2. Сетевое планирование в условиях неопределенности179

Лекция 22. Максимизация полезности 184

22.1. Функция полезности. Задача потребительского выбора184

22.2. Решение задачи потребительского выбора 187

22.3. Уравнение Слуцкого 189

Лекция 23. Производственные функции 191

23.1. Понятие производственной функции 191

23.2. Реакция производителя на изменения цен выпуска и ресурсов197

Лекция 24. Модель межотраслевого баланса 203

24.1. Базовые статические модели МОБ в СНС203

24.2. Отчетный межотраслевой баланс в методологии СНС206

Лекция 25. Использование модели межотраслевого баланса 211

25.1. Использование статической модели МОБв исследовании взаимосвязи отраслевых структур валового выпуска и конечного спроса211

25.2. Динамическая модель межотраслевого баланса214

Библиографический список217

studfiles.net

Тимакин о.А. Методы оптимальных решений

Курс лекций

Рекомендуется для направления подготовки специальностей «080100 Экономика» по профилям:

«Бухгалтерский учет, анализ и аудит»,

«Экономика предприятий и организаций»

«Финансы и кредит»

Ростов-на-Дону 2013

ОГЛАВЛЕНИЕ

  1. Лекция. Основы теории принятия решений

    1. Общие положения………………………………………………………….6

    2. Основные понятия системного анализа…………………………………..8

    3. Основные понятия исследования операций…………………………….12

    4. Постановка задач принятия оптимальных решений……………………13

    5. Методология и методы принятия решений………………………………15

Контрольные вопросы………………………………………………...17

2. Лекция. Экономико – математическое моделирование

2.1.Основные понятия.............................................................................18

2.2.Классификация моделей....................................................................19

2.3.Классификация решаемых экономических задач...............................21

Контрольные вопросы....................................................................22

3.Лекция. Линейное программирование

3.1.Общая постановка задачи..................................................................23

3.2. Двойственность в задачах линейного программирования……………25

3.3.Теоремы двойственности...................................................................26

3.4.Решение задач линейного программирования геометрическим

методом................................................................................................28

3.5.Симплексный метод решения задач линейного программирования...35

Контрольные вопросы..................................................................39

4.Лекция .Транспортная задача

4.1.Постановка задачи..............................................................................41

4.2.Алгоритм решения транспортных задач………………………….………42

4.3.Метод наименьшего элемента..............................................................43

4.5.Метод потенциалов.............................................................................44

4.6.Примеры решения транспортных задач................................................45

Контрольные вопросы..................................................................55

5 .Лекция .Целочисленное программирование

5.1.Постановка задачи целочисленного программирования........................57

5.2.Графический метод решения задач целочисленного программирования.....................................................................................58

5.3.Пример решения задачи целочисленного программирования…………..59

5.4.Задача о коммивояжере……………………………………………………..61

5.5.Пример решения задачи о коммивояжере…………………………………62

Контрольные вопросы...................................................... .....64

studfiles.net

ЛЕКЦИИ По дисциплине - Методы оптимальных решений

1   2   3   4   5   6   7   8   9

ЛЕКЦИИПо дисциплине:МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

ПРЕПОДАВАТЕЛЬ Тимакин О.А.

Ростов-на-Дону 2012

СОДЕРЖАНИЕ1. Моделирование экономических систем.

Основные понятия и определения1.1. Возникновение и развитие системных представлений

1.2. Модели и моделирование. Классификация моделей

1.3. Виды подобия моделей

1.4. Адекватность моделей2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ИХ РАСЧЕТА2.1. Понятие операционного исследования

2.2. Классификация и принципы построения математических моделей3. Некоторые сведения из математики3.1. Выпуклые множества

3.2. Линейные неравенства

3.3. Значения линейной формы на выпуклом множестве4. ПРИМЕРЫ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ4.1. Транспортная задача

4.2. Общая формулировка задачи линейного программирования

4.3. Графическая интерпретация решения задач линейного программирования5. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ5.1. Общая и основная задачи линейного программирования

5.2. Геометрический метод решения задач линейного программирования

5.3. Графическое решение задачи распределения ресурсов

5.4. Симплексный метод

5.5. Анализ симплекс-таблиц

5.6. Решение транспортных задач6. МЕТОДЫ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

И МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ6.1. Постановка задачи нелинейного программирования

6.2. Постановка задачи динамического программирования

Основные условия и область применения

6.3. Многокритериальная оптимизация

1. Моделирование экономических систем.

Основные понятия и определения.1.1. Возникновение и развитие системных представленийНаучно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы, обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.

В начале 80-х годов системность стала не только теоретической категорией, но и осознанным аспектом практической деятельности. Широко распространилось понятие того, что наши успехи связаны с тем, насколько системно мы подходим к решению возникающих проблем, а наши неудачи вызваны отсутствием системности в наших действиях. Сигналом о недостаточной системности в нашем подходе к решению какой-либо задачи является появление проблемы, разрешение же возникшей проблемы происходит, как правило, при переходе на новый, более высокий, уровень системности нашей деятельности. Поэтому системность не только состояние, но и процесс.

В различных сферах человеческой деятельности возникли различные подходы и соответствующие методы решения специфических проблем, которые получили различные названия: в военных и экономических вопросах - «исследование операций», в политическом и административном управлении - «системный подход», в философии «диалектический материализм», в прикладных научных исследованиях - «кибернетика». Позже стало ясно, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение», которое постепенно оформилось в науку, получившую название «системный анализ». В настоящее время системный анализ является самостоятельной дисциплиной, имеющей свой объект деятельности, свой достаточно мощный арсенал средств и свою прикладную область. Являясь по существу прикладной диалектикой, системный анализ использует все средства современных научных исследований - математику, моделирование, вычислительную технику и натурные эксперименты. Самая интересная и сложная часть системного анализа - это «вытаскивание» проблемы из реальной практической задачи, отделение важного от несущественного, поиск правильной формулировки для каждой из возникающих проблем, т.е. то, что называется «постановкой задачи».Многие довольно часто недооценивают работу, связанную с формулировкой задачи. Однако многие специалисты полагают, что «хорошо поставить задачу - значит на половину ее решить». Хотя в большинстве случаев заказчику кажется, что он уже сформулировал свою проблему, системный аналитик знает, что предлагаемая клиентом постановка задачи является моделью его реальной проблемной ситуации и неизбежно имеет целевой характер, оставаясь приблизительной и упрощенной. Поэтому необходимо проверить эту модель на адекватность, что приводит к развитию и уточнению первоначальной модели. Очень часто первоначальная формулировка изложена в терминах не тех языков, которые необходимы для построения модели.

1.2. Модели и моделирование. Классификация моделейПервоначально моделью называли некое вспомогательное средство, объект, который в определенных ситуациях заменял другой объект. Например, манекен в определенном смысле заменяет человека, являясь моделью человеческой фигуры. Древние философы считали, что отобразить природу можно только с помощью логики и правильных рассуждений, т.е. по современной терминологии с помощью языковых моделей. Через несколько столетий девизом английского Научного общества стал лозунг: «Ничего словами!», признавались только выводы, подкрепленные экспериментально или математическими выкладками.В настоящее время для постижения истины существует 3 пути:теоретическое исследование;

 эксперимент;

 моделирование. Моделью называется объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества:- дешевизну;

- наглядность;

- легкость оперирования и т.п. В теории моделей моделированием называется результат отображения одной абстрактной математической структуры на другую - тоже абстрактную, либо как результат интерпретации первой модели в терминах и образах второй.Paзвитие понятия модели вышло за пределы математических моделей и стало относиться к любым знаниям и представлениям о мире. Поскольку модели играют чрезвычайно важную роль в организации любой деятельности человека их можно разделить на познавательные (когницитивные) и прагматические, что соответствует делению целей на теоретические и практические.

 Познавательная модель ориентирована на приближении модели к реальности, которую эта модель отображает. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели.

 Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтомy при обнаружении расхождения между моделью и реальностью надо направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль образца, под который подгоняется действительность. Примерами прагматических моделей служат планы, кодексы законов, рабочие чертежи и т.д.

Другим принципом классификации целей моделирования может служить деление моделей на статические и динамические. Для одних целей нам может понадобиться модель конкретного состояния объекта в определенный момент времени, своего рода «моментальная фотография» объекта. Такие модели называются статическими. Примером являются структурные модели систем.

 В тех же случаях, когда возникает необходимостъ в отображении процесса изменения состояний, требуются динамические модели систем.В распоряжении человека имеется два типа материалов для построения моделей - средства самого сознания и средства окружающею материального мира. Соответственно этому модели делятся на абстрактные (идеальные) и материальные. Очевидно, что к абстрактным моделям относятся языковые конструкции и математические модели. Математические модели обладают наибольшей точностью, но чтобы дойти до их использования в данной области, необходимо получить достаточное количество знаний. По мнению Канта, любая отрасль знания может тем более именоваться наукой, чем в большей степени в ней используется математика.1.3. Виды подобия моделейЧтобы некоторая материальная конструкция могла быть моделью, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение подобия. Существуют разные способы установления такого подобия, что придает моделям особенности, специфичные для каждого способа. Прежде всего, это подобие, устанавливаемое в процессе создания модели. Назовем такое подобие прямым. Примером такого подобия являются фотографии, масштабированные модели самолетов, кораблей, макеты зданий, выкройки, куклы и т.д.Следует помнить, что как бы хороша ни была модель, она все-таки лишь заменитель оригинала, только в определенном отношении. Даже тогда, когда модель прямого подобия выполнена из того же материала, что и оригинал, т.е. подобна ему субстратно, возникают проблемы переноса результатов моделирования на оригинал. Например, при испытании уменьшенной модели самолета в аэродинамической трубе задача пересчета данных модельного эксперимента становится нетривиальной и возникает разветвленная, содержательная теория подобия, позволяющая привести в соответствие масштабы и условия эксперимента, скорость потока, вязкость и плотность воздуха. Трудно достигается взаимозаменяемость модели и оригинала в фотокопиях произведений искусства, голографических изображениях предметов искусства. Второй тип подобия между моделью и оригиналом называетсякосвенным. Косвенное подобие между оригиналом и моделью объективно существует в природе и обнаруживается в виде достаточной близости или совпадения их абстрактных математических моделей и вследствие этого широко используется в практике реального моделирования. Наиболее характерным примером может служить электромеханическая аналогия между маятником и электрическим контуром.Оказалось, что многие закономерности электрических и механических процессов описываются одинаковыми уравнениями, различие состоит в разной физической интерпретации переменных, входящих в это уравнение. Роль моделей, обладающих косвенным подобием, очень велика и роль аналогий (моделей косвенного подобия) в науке и практике трудно переоценить. Аналоговые вычислительные машины позволяют найти решение почти всякого дифференциального уравнения, представляя собой, таким образом, модель, аналог процесса, описываемого этим уравнением. Использование электронных аналогов в практике определяется тем, что электрические сигналы легко измерить и зафиксировать, что дает известные преимущества модели. Третий, особый класс моделей составляют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения. Такое подобие называется условным. С моделями условного подобия приходится иметь дело очень часто, поскольку они являются способом материального воплощения абстрактных моделей. Примерами условного подобия служат деньги (модель стоимости), удостоверение личности (модель владельца), всевозможные сигналы (модели сообщения).Например, сигналом наступления кочевников у древних славян служили костры на курганах. Бумажные денежные знаки могут играть роль модели стоимости только до тех пор, пока в среде их обращения существуют правовые нормы, поддерживающие их функционирование. Керенки в настоящее время имеют только историческую ценность, но это не деньги, в отличие от царских золотых монет, которые представляют материальную ценность из-за наличия благородного металла. Особенно наглядна условность знаковых моделей: цветок в окне явочной квартиры Штирлица означал провал явки, ни сорт, ни цвет не имели никакого отношения к знаковой функции цветка.1.4. Адекватность моделей Модель, с помощью которой успешно достигается поставленная цель, будем называть адекватной этой цепи. Адекватность означает, что требования полноты, точности и правильности (истинности) модели выполнены не вообще, а лишь в той мере, которая достаточна достижения поставленной цели.

В ряде случаев удается ввести меру адекватности некоторых целей, т.е. указать способ сравнения двух моделей по степени успешности достижения цели с их помощью. Если к тому же есть способ количественно выразить меру адекватности, то задача улучшения модели существенно облегчается. Именно в таких случаях можно количественно ставить, вопросы об идентификации модели т.e. о нахождении в заданном классе моделей наиболее адекватной, об исследовании чувствительности и устойчивости моделей т.e. зависимости меры адекватности модели от ее точности, об адаптации моделей, т.е. подстройке параметров модели с целью повышения ее точности.

Приближенность модели не следует путать с адекватностью. Приближенность модели может быть очень высокой, но во всех случаях модель - это другой объект и различия неизбежны (единственной совершенной моделью любого объекта является сам объект). Величину, меру, степень приемлемости различия можно ввести, только соотнося его с целью моделирования. Так некоторые подделки произведений искусства даже эксперты не могут отличить от оригинала, но все-таки это всего лишь подделка, и с точки зрения вложения капитала не представляет никакой ценности, хотя для любителей искусства ничем не отличается от оригинала. У английского фельдмаршала Монтгомери во время войны был двойник, появление которого на разных участках фронта намеренно дезинформировало разведку немцев.

Упрощение является сильным средством для выявления главных эффектов в исследуемом явлении: это видно на примере таких явлений физики, как идеальный газ, абсолютно упругое тело, математический маятник и абсолютно твердый рычаг.

Есть еще один, довольно загадочный, аспект упрощенности модели. Почему-то оказывается, что из двух моделей, одинаково хорошо описывающих систему, та модель, которая проще, ближе к истине. Геоцентрическая модель Птоломея позволяла рассчитать движение планет, хотя и по очень громоздким формулам, с переплетением сложных циклов. Переход к гелиоцентрической модели Коперника значительно упростил расчеты. Древние говорили, что простота - печать истины.2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ИХ РАСЧЕТА2.1. Понятие операционного исследованияBпервые математические модели были использованы для решения практической задачи в 30-х годах в Великобритании при создании системы противовоздушной обороны. Для разработки данной системы были привлечены ученые различных специальностей. Система создавалась в условиях неопределенности относительно возможных действий противника, поэтому исследования проводились на адекватных математических моделях. В это время впервые был применен термин: «операционное исследование», подразумевающий исследования военной операции. В последующие годы операционные исследования или исследования операций развиваются как наука, результаты которой применяются для выбора оптимальных решений при управлении реальными процессами и системами.

Решения человек принимал всегда и во всех сферах своей деятельности. Раньше хотели, чтобы принимаемые решения всегда были правильными. Теперь принято говорить, что решения должны быть оптимальными. Чем сложнее объект управления, тем труднее принять решение, и, следовательно, тем легче допустить ошибку. Вопросам принятия решений на основе применения ЭВМ и математических моделей посвящена новая наука «Исследование операций», приобретающая в последние годы все более обширное поле приложений. Эта наука сравнительно молодая, ее границы и содержание нельзя считать четко определенными.

Предмет под названием «Исследование операций» входит в программу элитарных вузов, но не всегда в этот термин вкладывается одно и то же содержание. Некоторые ученые под «исследованием операций» понимают, главным образом, математические методы оптимизации, такие как линейные, нелинейные, динамическое программирование. Другие к исследованию операций подходят с позиции теории игр и статистических решений. Наконец, некоторые ученые вкладывают в понятие «исследование операций» чрезмерно широкий смысл, считая ее основой системного анализа и «наукой наук».

 Под термином «исследование операций» мы будем понимать применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.Окончательно термин «исследование операций» закрепился в конце Второй мировой войны, когда в вооруженных силах США были сформированы специальные группы математиков и программистов, в задачу которых входила подготовка решений для командующих боевыми действиями. В дальнейшем исследование операций расширило область своих применений на самые разные области практики: экономика, транспорт, связь и даже охрана природы.

чтобы человеку принять решение без ЭВМ, зачастую ничего не надо, кроме опыта и интуиции. Правда, никакой гарантии правильности, а тем более оптимальности при этом нет. Подчеркнем, что ЭВМ никаких решений не принимает. Решение принимает человек (ЛПР). А ЭВМ только помогает найти варианты решений. Непременное присутствие человека (как окончательный инстанции принятия решений) не отменяется даже при наличии полностью автоматизированной системы управления. Нельзя забывать о том, что само создание управляющего алгоритма, выбор одного из возможных его вариантов, есть тоже решение. По мере автоматизации управления функции человека перемещаются с одного уровня управления на другой - высший. Основные этапы решения задачи принятия оптимальных решений с помощью ЭВМ показаны на Рис. 2.1.

Исходные

данные


Объект Задача Модель Алгоритм Программа ЭВМ

Пакет прикладных программ (ППП) 
Решение
1   2   3   4   5   6   7   8   9

topuch.ru

3.Лекция . Линейное программирование.

3.1 Общая постановка задачи

Линейное программирование — наука о ме­тодах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Определение .

Математическое выражение целевой функ­ции и ее ограничений называется математической моделью экономической задачи.

В общем виде математическая модель задачи линейного программирования (ЛП) записывается как

Z(x)=C1X1+C2X2 + . . . +СJXJ + . . . +СnXn _ max(min)

при ограничениях:

где Xi — неизвестные;a ij , bj , Ci — заданные постоянные вели­чины.

Все или некоторые уравнения системы ограничений могут быть записаны в виде неравенств.

Математическая модель в более краткой записи имеет вид

Z(x) = ∑Ci Xi max(min)

при ограничениях:

Определение Допустимым решением (планом) зада­чи линейного программирования называется вектор X = (х1, х2, ,...хn , ) , удовлетворяющий системе ограничений.

Множество допустимых решений образует область допус­тимых решений (ОДР).

Определение Допустимое решение, при котором целевая функция достигает своего экстремального значения, называ­ется оптимальным решением задачи линейного программиро­вания и обозначается Хопт.

Базисное допустимое решение

Является опорным решением, где r— ранг системы ограничений.

Виды математических моделей ЛП

Математическая модель задачи ЛП может быть каноничес­кой и неканонической.

Определение . Если все ограничения системы заданы урав­нениями и переменные Xj неотрицательные, то такая модель задачи называется канонической.

Если хотя бы одно ограничение является неравенством, то модель задачи ЛП является неканонической. Чтобы перейти от неканонической модели к канонической, необходимо в каждое

неравенство ввести балансовую переменную хn+i .

Если знак неравенства < , то балансовая переменная вводится со знаком плюс, если знак неравенства >, то — минус. В целевую функ­цию балансовые переменные не вводятся.

Чтобы составить математическую модель задачи ЛП, не­обходимо:

— ввести обозначения переменных;

— исходя из цели экономических исследований, составить целевую функцию;

— учитывая ограничения в использовании экономических показателей задачи и их количественные закономернос­ти, записать систему ограничений.

3. 2 Двойственность в задачах линейного программирования

Каждая задача линейного программирования, называемая прямой или исходной, тесно связана с другой задачей, ее называют двойственной.

Математические модели этих задач имеют следующий вид.

прямая задача:

двойственная задача:

Эти задачи экономически могут быть сформулированы следующим образом.

Прямая задача: сколько и какой продукции хi(i-1, 2, … , n) надо произвести, чтобы при заданных стоимостях единицы продукции Сi, объемом имеющихся ресурсов bj (j=1,2,…, m) и нормах расхода ресурсов аij максимизировать выпуск продукции в стоимостном виде.

Двойственная задача: какова должна быть оценка единицы каждого ресурса yj (j=1, 2,…, m), чтобы при заданных bj, ci и аij минимизировать общую оценку затрат на все ресурсы.

Правила построения двойственной задачи по имеемой прямой задаче:

  1. Если прямая задача решается на максимум, то двойственная задача решается на минимум; если прямая задача решается на минимум то двойственная на максимум;

  2. В задаче на максимум ограничения неравенства имеют вид – ≤, а в задаче на минимум – ;

  3. Каждому ограничению прямой задачи соответствует переменная двойственной задачи, в другой модели ограничению двойственной задачи соответствует переменная прямой задачи;

  4. Матрица системы ограничений двойственной задачей получается из матрицы из матрицы систем ограничений прямой задачи транспонированием;

  5. Свободные члены системы ограничений прямой задачи являются коэффициентами при соответствующих переменных целевой функции двойственной задачи и наоборот;

  6. Если на переменную прямой задачи наложено условие неотрицательности, то соответствующее ограничение двойственной задачи записывается как ограничение-неравенство, в противном случае – как ограничение равенство;

  7. Если какое либо ограничение прямой задачи записано как равенство, то на соответствующую переменную двойственной задачи условие неотрицательности не налагается.

Пример:

Прямая задача:

Двойственная задача:

В этой задаче – предельные оценки стоимости единицы каждого ресурса, целевая функция – оценка стоимости всех ресурсов, а каждое ограничение есть условие, что оценка ресурсов, идущих на производство продукции, не менее чем цена единицы продукции.

Взаимосвязь решений прямой и двойственной задач находится из трех теорем двойственности.

3. 3 Теоремы двойственности.

Первая теорема двойственности:

Если одна из двойственных задач имеет оптимальное решение, то и другая задача имеет оптимальное решение, причем экстремальные значения целевых функций совпадают Z(X)=Z'(Y). Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.

Экономическое содержание первой теоремы двойственности: если задача определения оптимального плана, максимизирующего выпуск продукции, разрешима, то разрешима и задача определения и оценок ресурсов, при этом полная стоимость продукта, полученного в результате реализации оптимального плана, совпадает с суммарной оценкой ресурсов. Совпадения, значений целевых функций для соответствующих решений пары двойственных задач достаточно для того, чтобы эти решения были оптимальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными только тогда, когда полная стоимость произведенной продукции и суммарная оценка ресурсов совпадает.

Оценки выступают как инструмент сбалансирования затрат и результатов. Двойственные оценки обладают тем свойством, что они гарантируют рентабельность оптимального плана, т.е. равенство общей стоимости продукции и ресурсов обуславливает убыточность всякого другого плана отличающегося от оптимального. Двойственные оценки позволяют сопоставлять и сбалансировать затраты и результаты производства.

Вторая теорема двойственности:

Для того чтобы план Х* и Y* пары двойственных задач были оптимальными, необходимо и достаточно выполнение условий:

Эти условия называются условиями дополняющей нежесткости. Из них следует, что если какое-либо неравенство системы ограничений в одной из задач не обращается в строгое равенство оптимальным планом этой задачи, то соответствующий элемент оптимального плана двойственной задачи должен равняться нулю. Если какой-либо элемент оптимального плана одной из задач положителен, то соответствующее ограничение в двойственной задаче её оптимальным планом должно обращаться в строгое равенство, т.е.

если  bj, то ;

если  0, то .

Аналогично,

если 

если 0 то

Экономически это означает, что если по некоторому оптимальному плану X*= производства расход j-го ресурса меньше его запаса bj, то в оптимальном плане соответствующая двойственная оценка единицы этого ресурса равна нулю. Если же в некотором оптимальном плане оценок его j-й элемент больше нуля, то в оптимальном плане производства расход соответствующего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс, т.е. полностью используемый по оптимальному плану производства, имеет положительную оценку, а избыточный ресурс, т.е. не используемый полностью имеет нулевую оценку.

Третья теорема двойственности:

Двойственные оценки показывают приращение функции цели, вызванное малым изменением свободного члена соответствующего ограничения задачи линейного программирования, т.е.

В последнем выражении дифференциалы заменим приращениями. Тогда получим выражение:

,

если , тогда, Экономическое содержание третьей теоремы двойственности: двойственная оценка численно равна изменению целевой функции при изменении соответствующего ресурса на единицу. Двойственные оценкиyjчасто называются скрытыми теневыми или маргинальными оценками ресурсов.

studfiles.net

Лекция 3. Линейное программирование - Лекции по МОР

План.

3.1.Линейное программирование как инструмент математического моделирования экономики.

3.2. Примеры моделей линейного программирования.

3.1. Линейное программирование как инструмент математического моделирования экономики

Линейное программирование сформировалось как отдельный раздел прикладной математики в 40 – 50-х гг. ХХ в. благодаря работам советского ученого, лауреата Нобелевской премии Л.В. Канторовича. В 1939 году им была опубликована работа «Математические методы организации и планирования производства», в которой он с использованием математики решил экономические задачи о наилучшей загрузке машин, раскрое материалов с наименьшими расходами, распределении грузов по нескольким видам транспорта и другие, предложив метод разрешающих множителей8.

Л.В. Канторович впервые сформулировал такие широко используемые экономико-математические понятия, как оптимальный план, оптимальное распределение ресурсов, объективно обусловленные оценки, указав многочисленные области экономики, где они могут быть применены.

Понятие линейного программирования было введено американским математиком Д. Данцигом, который в 1949 г. предложил алгоритм решения задачи линейного программирования, получивший название «симплексный метод».

Математическое программирование, в которое входит линейное программирование, в настоящее время является одним из направлений исследования операций. В зависимости от вида решаемых задач в нем выделяют такие области, как линейное, нелинейное, дискретное, динамическое программирование и др. Термин «программирование» введен в связи с тем, что неизвестные переменные, которые находятся в процессе решения задачи, обычно определяют программу или план работы некоторого экономического объекта.

В классическом математическом анализе исследуются общая постановка задачи определения условного экстремума. Однако в связи с развитием промышленного производства, транспорта, агропромышленного комплекса, банковского сектора традиционных результатов математического анализа оказалось недостаточно. Потребности практики и развитие вычислительной техники привели к необходимости определения оптимальных решений при анализе сложных экономических систем.

Главным инструментом для решения таких задач является математическое моделирование. При этом сначала строится простая модель, затем проводится ее исследование, позволяющее понять, какие из интегрирующих свойств объекта не улавливаются формальной схемой, после чего за счет усложнения модели обеспечивается большая ее адекватность реальности. Во многих случаях первым приближением к действительности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, являются линейными. Практика показывает, что достаточное количество экономических процессов достаточно полно описывается линейными моделями. Следовательно, линейное программирование как аппарат, позволяющий отыскивать условный экстремум на множестве, заданном линейными уравнениями и неравенствами, играет важную роль при анализе этих процессов.

Линейное программирование получило широкое развитие в связи с тем, что было установлено: ряд задач сферы планирования и управления может быть сформулирован в виде задач линейного программирования, для решения которых имеются эффективные методы. По оценкам специалистов примерно 80–85 % всех решаемых на практике задач оптимизации относится к задачам линейного программирования.

Созданный математический аппарат в сочетании с компьютерными программами, производящими трудоемкие расчеты, позволяет широко использовать модели линейного программирования в экономической науке и практике.

Определение 19. Линейное программирование (ЛП) – это область математического программирования, являющегося разделом математики и изучающего методы поиска экстремальных (наибольших и наименьших) значений линейной функции конечного числа переменных, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые представляют количественные соотношения между переменными, выражающие условия и требования экономической задачи и математически записываются в виде уравнений или неравенств, называются системой ограничений.

К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.

Общая задача линейного программирования (ЗЛП) состоит в нахождении экстремального значения (максимума или минимума) линейной функции, называемой целевой10:

(3.1)

от nпеременных x1, x2, …, хn при наложенных функциональных ограничениях:

(3.2)

и прямых ограничениях (требовании неотрицательности переменных)

, (3.3)

где aij, bi, cj – заданные постоянные величины.

В системе ограничений (3.2) знаки «меньше или равно», «равно», «больше или равно» могут встречаться одновременно.

ЗЛП в более краткой записи имеет вид:

,

при ограничениях:

;

.

Вектор Х = (x1, x2, …, хn) компоненты которого удовлетворяют функциональным и прямым ограничениям задачи называют планом (или допустимым решением) ЗЛП.

Все допустимые решения образуют область определения задачи линейного программирования, или область допустимых решений (ОДР). Допустимое решение, которое доставляет максимум или минимум целевой функции f(X), называется оптимальным планом задачи и обозначается f(X*), где Х*=(x1*,  x2*, …, хn*).

Еще одна форма записи ЗЛП:

,

где f(X*) есть максимальное (минимальное) значение f(С, х), взятое по всем решениям, входящим в множество возможных решений Х.

Определение 211. Математическое выражение целевой функции и ее ограничений называются математической моделью экономической задачи.

Для составления математической модели необходимо:

1) обозначить переменные;

2) составить целевую функцию исходя из цели задачи;

3) записать систему ограничений, учитывая имеющие в условии задачи показатели и их количественные закономерности.

topuch.ru

Галкина М. Ю. Методы оптимальных решений (Лекции)

Галкина М.Ю.

Методы оптимальных решений

(Лекции)

2011 г.

Введение 3

1.1.Различные формы записи задачи линейного программирования. 4

1.2.Графический метод решения задачи линейного программирования 6

1.3.Графический способ метод решения ЗЛП, заданной в симметричной форме, в случае двух переменных 8

1.4.Использование надстройки Поиск решения MS Excel 16

1.5.Решение ЗЛП средствами MS Excel. 20

1.6.Двойственные задачи 24

Вопросы для самопроверки 34

2.1.Задача о назначениях 35

2.2.Теория игр 49

2.2.1.Основные понятия 49

2.2.2.Нижняя и верхняя цены игры. Принцип минимакса 51

2.2.3.Решение игр в смешанных стратегиях 53

2.2.4.Решение матричных игр 2х2 в смешанных стратегиях 54

2.2.5.Сведение матричной игры к задаче линейного программирования 64

2.2.6.Игры с природой 72

Вопросы для самопроверки 78

3.1.Множество Парето 79

3.2.Метод идеальной точки 80

Вопросы для самопроверки 87

4.1.Графическое решение задачи нелинейного программирования 87

4.2.Метод множителей Лагранжа 90

4.3.Решение задач выпуклого программирования 91

Вопросы для самопроверки 98

Введение

Несмотря на многообразие задач организационного управления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной модели рассматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возможных управляющих воздействий, влияющих на достижение сформулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконструированной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная корректировка первоначальной модели.

6. Реализация полученного решения на практике.

В курсе методы оптимальных решений центральное место отведено вопросам, относящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

Для решения экономической задачи математическими методами составляют математическую модель задачи, т.е. записывают ее с помощью математических выражений: неравенств, уравнений и т.п. Для математического описания экономической задачи можно руководствоваться следующей общей схемой:

1) выбирают некоторое количество переменных , заданием числовых значений которых однозначно определяется одно из возможных состояний исследуемого экономического процесса;

2) выражают взаимосвязи исследуемого экономического процесса в виде математических соотношений (уравнений, неравенств). Эти соотношения образуют систему ограничений математической модели;

3) поиск наилучшего решения формулируют в терминах поиска оптимального (максимального или минимального) значения функции . Построенная функция называется целевой.

В зависимости от свойств целевой функции, математическое программирование можно рассматривать как ряд самостоятельных дисциплин, занимающихся изучением и разработкой методов решения определенных классов задач. Если - линейная функция и линейны функции, описывающие ограничения на переменные , то математическая модель представляет задачу линейного программирования. Если хотя бы одна из указанных функций нелинейная, то математическая модель является объектом исследования нелинейного программирования. Наиболее изученным разделом математического программирования является линейное программирование. Для решения задач этого раздела разработан целый ряд эффективных алгоритмов и методов.

Математическое моделирование является, с одной стороны, очень важным и сложным, а с другой — практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся попытки выделить общие принципы создания математических моделей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкретных проблем, либо, наоборот, к появлению рецептов, применимых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

Мощным инструментом решения задач, построенных на базе математической модели, является наука, которая называется математическое программирование. В данном случае понятие программирование употребляется в смысле планирование (в отличие от программирования для ЭВМ). В свою очередь, в зависимости от вида решаемых задач, в математическом программировании выделяют такие области, как линейное, нелинейное, дискретное, динамическое, стохастическое программирование.

Курс по методам оптимальных решений должен дать студентам достаточное представление о математическом аппарате, используемом при принятии решений в экономических задачах. Освоение этого материала придает студенту уверенность, которой обычно недостает, если он с самого начала направляет свои усилия на изучение философских аспектов и искусства принятия решений.

  1. Линейное программирование
    1. Поделитесь с Вашими друзьями:

psihdocs.ru