Энергия ветра: использование. Ветроэнергетика экономика


Ветроэнергетика - это... Что такое Ветроэнергетика?

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,6 гигаватт[1]. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 тераватт-часов (2,5 % всей произведённой человечеством электрической энергии).[2][3] Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2011 год в Дании с помощью ветрогенераторов производится 28 % всего электричества, в Португалии — 19 %, в Ирландии — 14 %,[4], в Испании — 16 % и в Германии — 8 %.[5] В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.[3]

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии.[6][7][8] Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

История использования энергии ветра

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.[9]

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс. «Машины: применение природных сил и науки»).

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо — 1526 г., Глочестер — 1542 г., Лондон — 1582 г., Париж — 1608 г., и др. В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт. В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра.[9]

Современные методы генерации электроэнергии из энергии ветра

Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров.[10] Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[11] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.[12]

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. Компания Clipper Windpower разрабатывает ветрогенератор мощностью 10,0 МВт для офшорного применения[13]. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике[14].

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.[15]

Статистика по использованию энергии ветра

На июнь 2012 года суммарные установленные мощности всех ветрогенераторов мира составили 254 ГВт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ[16]. Предполагаемая мощность ветряной энергетики к концу 2012 года по данным World Wind Energy Assosiation приблизится к значению в 273 ГВт[17].

Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов[18][19].

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.

Таблица: Суммарные установленные мощности, МВт, по странам мира 2005—2011 г. Данные Европейской ассоциации ветроэнергетики[20] и GWEC[21].

Страна 2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. 2011 г. Мвт.
Китай 1260 2405 6050 12210 25104 41800 62733
США 9149 11603 16818 25170 35159 40200 46919
Германия 18428 20622 22247 23903 25777 27214 29060
Испания 10028 11615 15145 16754 19149 20676 21674
Индия 4430 6270 7580 9645 10833 13064 16084
Франция 757 1567 2454 3404 4492 5660 6800
Италия 1718 2123 2726 3736 4850 5797 6737
Великобритания 1353 1962 2389 3241 4051 5203 6540
Канада 683 1451 1846 2369 3319 4008 5265
Португалия 1022 1716 2150 2862 3535 3702 4083
Дания 3122 3136 3125 3180 3482 3752 3871
Швеция 510 571 788 1021 1560 2163 2907
Япония 1040 1394 1538 1880 2056 2304 2501
Нидерланды 1224 1558 1746 2225 2229 2237 2328
Австралия 579 817 817,3 1306 1668 2020 2224
Турция 20,1 50 146 433 801 1329 1799
Ирландия 496 746 805 1002 1260 1748 1631
Греция 573 746 871 985 1087 1208 1629
Польша 73 153 276 472 725 1107 1616
Бразилия 29 237 247,1 341 606 932 1509
Австрия 819 965 982 995 995 1011 1084
Бельгия 167,4 194 287 384 563 911 1078
Болгария 14 36 70 120 177 375 612
Норвегия 270 325 333 428 431 441 520
Венгрия 17,5 61 65 127 201 329 329
Чехия 29,5 54 116 150 192 215 217
Финляндия 82 86 110 140 146 197 197
Эстония 33 32 58 78 142 149 184
Литва 7 48 50 54 91 154 179
Украина 77,3 86 89 90 94 87 151
Россия 14 15,5 16,5 16,5 14 15,4

Таблица: Суммарные установленные мощности, МВт по данным WWEA.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227

В то же время, по данным European Wind Energy Association, суммарная вырабатываемая мощность ветряной энергии в России за 2010 год составила 9 МВт, что приблизительно соответствует показателям Вьетнама (31 МВт), Уругвая (30,5 МВт), Ямайки (29,7 МВт), Гваделупы (20,5 МВт), Колумбии (20 МВт), Гайаны (13,5 МВт) и Кубы (11,7 МВт).

В 2011 году ветряные электростанции Германии произвели 8 % от всей произведённой в Германии электроэнергии[22].

В 2011 году 28 % электроэнергии в Дании вырабатывалось из энергии ветра[23].

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.[24]

Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии[25]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны[26].

Ветроэнергетика в России

В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л.с., 8 л.с. до 45 л.с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[27].

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.[28]

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Cамая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SЕАS Energi Service A.S.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт·ч.

В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[28]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008—2010 гг. не превышала 0,4 млн кВт·ч.

В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт·ч.

В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[29].

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Мощность высотных потоков ветра (на высотах 7-14 км) примерно в 10-15 раз выше, чем у приземных. Эти потоки обладают постоянством, почти не меняясь в течение года. Возможно использование потоков, расположенных даже над густонаселёнными территориями (например — городами), без ущерба для хозяйственной деятельности.

Германия планирует к 2020 году производить 19,6 % электроэнергии из возобновляемых источников энергии, в основном из ветра.[30]

Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики[31].

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч.[32][30].

В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году[33]. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 Гвт установленной мощности уже в 2010 году.[34]

Индия к 2012 году увеличит свои ветряные мощности в 2 раза в сравнении с 2008 годом. К 2012 году будет построено новых ветряных электростанций на 6 тысяч МВт.[35]

Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт.[36].

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт — офшорных[37].

Экономические аспекты ветроэнергетики

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (cтоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра[38].

Скорость ветра Себестоимость (для США, 2004 год)
7,16 м/c 4,8 цента/кВт·ч;
8,08 м/с 3,6 цента/кВт·ч;
9,32 м/с 2,6 цента/кВт·ч.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 4,5 — 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

Экономика ветроэнергетики в России

В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 123 дня], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н.роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и ФЭМ (фото-электрические модули) — солнечные панели. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 64 дня], пункты наблюдения, погодные и метео-станции и так далее).

Другие экономические проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

Экономика малой ветроэнергетики

В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

  • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
  • Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
  • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

  • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
  • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
  • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома в России.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

Экологические аспекты ветроэнергетики

Выбросы в атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота[39].

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн[40].

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее[41][42].

Вентиляция городов

В современных городах выделяется большое количество вредных веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна [источник не указан 867 дней].

Шум

Ветряные энергетические установки производят две разновидности шума:

  • механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

Источник шума Уровень шума, дБ
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м 105
Шум от отбойного молотка в 7 м 95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м 35—45
Шумовой фон ночью в деревне 20—40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Низкочастотные вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.[43]

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.[44]

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие

Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью[45], что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам

Таблица: Вред, наносимый животным и птицам. Данные AWEA[46].

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков[47].

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала[48]. Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

См. также

Источники

  1. ↑ Global Wind Installations Boom, Up 31 % in 2009
  2. ↑ World Wind Energy Report 2010 (PDF). Архивировано из первоисточника 26 августа 2011.
  3. ↑ 1 2 Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate. Worldwatch.org. Архивировано из первоисточника 26 августа 2011.
  4. ↑ Renewables. eirgrid.com. Архивировано из первоисточника 26 августа 2011.
  5. ↑ «Wind Energy Update» (PDF). Wind Engineering: 191–200.
  6. ↑ Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications. eirgrid.com (February 2004). Архивировано из первоисточника 26 августа 2011. Проверено 22 ноября 2010.
  7. ↑ "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано из первоисточника 26 августа 2011.
  8. ↑ Claverton-Energy.com (28 августа 2009). Архивировано из первоисточника 26 августа 2011. Проверено 29 августа 2010.
  9. ↑ 1 2 Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7,
  10. ↑ http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
  11. ↑ http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
  12. ↑ http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
  13. ↑ Clipper Windpower Announces Groundbreaking for Offshore Wind Blade Factory
  14. ↑ Edward Milford BTM Wind Market Report 20 Июль 2010 г.
  15. ↑ Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 23 декабря 2012.
  16. ↑ Annual installed global capacity 1996—2011
  17. ↑ Half-year report 2012
  18. ↑ US and China in race to the top of global wind industry
  19. ↑ http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
  20. ↑ «Wind in power. 2011 European statistics»
  21. ↑ «Global Wind Statistics 2011»
  22. ↑ Die Energiewende in Deutschland
  23. ↑ The Danish Market
  24. ↑ БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
  25. ↑ Wind power — clean and reliable
  26. ↑ Испания получила рекордную долю электричества от ветра
  27. ↑ Использование энергии ветра в СССР \\ Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. стр. 7
  28. ↑ 1 2 Энергетический портал. Вопросы производства, сохранения и переработки энергии
  29. ↑ http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
  30. ↑ 1 2 [tt_news=1892&tx_ttnews[backPid]=1&cHash=05ee83819c7f18864985e61c3fd26342 EU will exceed renewable energy goal of 20 percent by 2020]  (англ.). Проверено 21 января 2011.
  31. ↑ Denmark aims to get 50% of all electricity from wind power
  32. ↑ EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
  33. ↑ Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy», Energy Policy, Vol. 35, Isue 7, July 2007
  34. ↑ China’s Galloping Wind Market  (англ.). Проверено 21 января 2011.
  35. ↑ India to add 6,000 MW wind power by 2012  (англ.). Архивировано из первоисточника 26 августа 2011. Проверено 21 января 2011.
  36. ↑ Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
  37. ↑ John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
  38. ↑ American Wind Energy Association. The Economics of Wind Energy
  39. ↑ Wind Energy and Wildlife: The Three C’s
  40. ↑ Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
  41. ↑ D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2004. — В. 46.
  42. ↑ Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal. — 2009. — В. 1.
  43. ↑ http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
  44. ↑ Wind Energy in Cold Climates
  45. ↑ Wind energy Frequently Asked Questions
  46. ↑ Энергия ветра: мифы против фактов
  47. ↑ MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
  48. ↑ Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

Литература

  • Д. де Рензо, В. В. Зубарев Ветроэнергетика. Москва. Энергоатомиздат, 1982
  • Е. М. Фатеев Вопросы ветроэнергетики. Сборник статей. Издательство АН СССР, 1959

Ссылки

dic.academic.ru

Ветроэнергетика - ключевая отрасль энергетики будущего

Название данной статьи на первый взгляд выглядит необычно, провокационно и даже крамольно. ВИЭ до сих пор рассматриваются многими наблюдателями в качестве экзотической и маргинальной «альтернативы» традиционному, устоявшемуся энергетическому укладу, основывающемуся на сжигании ископаемого сырья.

В то же время статистические данные убеждают, что возобновляемая энергетика, в том числе ветроэнергетика, уже вышла из категории «альтернативной», став энергетикой основной, главным направлением энергетического развития.

Например, ветроэнергетика занимает первое место

а) по чистому приросту новых электроэнергетических мощностей в ЕС за период 2000 – 2014 (116,76 ГВт). К слову, третье место занимает солнечная энергетика, пропустив вперед, на второе место, природный газ.

b) по плановому чистому приросту новых мощностей в США в 2015 году (9,811 ГВт), опережая более чем в два раза природный газ [1].

UPD. Согласно сообщению Американской ассоциации ветровой энергетики (AWEA) от 21.12.2015 общая мощность ветроэнергетических установок в США составила рекордные 70 ГВт. Такого объема достаточно для снабжения электричеством 19 млн. среднестатистических американских домохозяйств или обеспечения работы 26 млн. электромобилей.

Строительство ветроэлектростаций позволило создать в стране более 70 тыс. дополнительных рабочих мест, а в планах Министерства энергетики США достижение уровня 20-процентной генерации электроэнергии всех штатов за счет энергии ветра.

В ЕС в 2014 году 100% (!) чистого прироста мощностей пришлось на ВИЭ, среди которых лидирует ветроэнергетика (прирост - более 11 ГВт) [2].

Читайте также: Европа ставит новый рекорд по количеству прибрежных ветрогенераторов

В Китае, где ветроэнергетика уже несколько лет производит больше электричества, чем атомная, в 2014 было установлено 23,2 ГВт мощностей ветряных электростанций – абсолютный мировой рекорд [3]. В перовом полугодии 2015 года ввод новых мощностей составил 9,2 ГВт [4]. Планируется, что за 2015 г. будет установлено 21,5 ГВт [5]. Официальная цель: 200 ГВт мощности ветроэнергетики к 2020 г. Для сравнения, установленная мощность всей российской электроэнергетики: примерно 230 ГВт.

В Дании в 2014 г. доля ветроэнергетики в производстве электричества составила почти 40%, в Испании и Португалии – более 20%, в Ирландии – около 20%, Великобритании – 9%, Германии – 8,6% [6], Китае – 2,8% [7].

В 24 странах мира установленная мощность национальной ветроэнергетики превышает 1 ГВт [8].

Все страны БРИКС, кроме России, переживают бум ветроэнергетики. Упоминавшийся Китай – мировой лидер, как по темпам роста, так и по установленной мощности. Бразилия ввела в 2014 г. 2,5 ГВт – четвёртый показатель в мире за этот год, Индия – 2,3 ГВт, и по установленной мощности (22,5 ГВт) занимает в мировой табели пятое место. Южная Африка за один только 2014 г. нарастила мощность с 10 до 570 МВт [9].

Масштабы сегодняшних перемен в энергетике хорошо демонстрирует еще одно сравнение: построенные за один лишь 2014 г. мощности мировой ветроэнергетики превышают совокупную установленную мощность российских ГЭС и в два раза больше всех действующих атомных электростанций Российской Федерации.

Приведённые цифры доказывают, что ветроэнергетика стала важным способом производства электроэнергии не только в промышленно развитых, но и развивающихся странах.

Читайте также: Самый большой в мире ветропарк будет построен в Великобритании датской компанией DONG Energy

Размер имеет значение

История развития современной ветроэнергетики – это история роста размеров и мощности ветрогенераторов.

Развитие науки и техники, совершенствование технологий планирования размещения ветряных электростанций привели к тому, что в «нестабильной» ветроэнергетике сегодня обеспечивается достаточно высокий коэффициент использования установленной мощности (КИУМ).

В 80-х гг. прошлого века средняя ветряная турбина имела ротор диаметром 17 м. и выдавала 75 кВт мощности. Современная ветряная турбина — существенно более крупный генерирующий объект. По данным Европейской ассоциации ветроэнергетики [10] средняя мощность современного материкового ветряка в Европе сегодня – 2,2 МВт. Он позволяет производить в среднем за год 4702 МВт*ч электроэнергии (что соответствует годовому энергопотреблению примерно 1200 домохозяйств). КИУМ – 24%. Средняя морская (offshore) турбина обладает мощностью 3,6 МВт и вырабатывает 12961 МВт*ч в год. КИУМ здесь сопоставим с традиционной энергетикой– 41% (использование мощности в сегодняшних энергосистемах как правило не превышает 50%).

Рост размеров обусловлен развитием технологий и, разумеется, экономическими причинами – желанием сократить удельные капитальные затраты и LCOE (приведённую стоимость производства электричества). Этим объясняется и то, что турбины морского, шельфового размещения стремятся делать мощнее, поскольку капитальные затраты в морском строительстве существенно выше.

Размеры ветрогенераторов будут расти и дальше. Сегодня серийно производятся турбины мощностью 7,5 МВт, с высотой башни и диаметром ротора, далеко превосходящими 100 метров. Есть действующие прототипы 8-ми и даже 10-ти мегаваттных ветроустановок.

Читайте также: Ветрогенератор Онипко: украинский инженер создал уникальный высокоэффективный ветряк (видео)

Экономика и поддержка

На сегодняшний день материковая (onshore) ветроэнергетика превратилась в один из самых дешевых способов производства электричества.

Поскольку данные по странам и проектам в электроэнергетике могут значительно отличаться, мы рассматриваем интегральные, обобщающие исследования, авторы которых анализируют крупные массивы данных множества энергетических проектов.

В январе 2015 г. Международное агентство по возобновляемой энергии (IRENA) опубликовало объемное исследование под названием «Стоимость генерации в возобновляемой энергетике в 2014 г.». «Во многих странах, включая Европу, энергия ветра является одним из самых конкурентоспособных источников новых энергетических мощностей… Отдельные проекты в ветроэнергетике регулярно поставляют электроэнергию по $0,05 за кВт•ч без финансовой поддержки, при этом для электростанций, работающих на ископаемом топливе, стоимостной интервал составляет $0,045–0,14 за кВт•ч,» [11] — сообщает Агентство.

Прогнозные значения на 2020 г. Министерства энергетики США показывают, что конкурировать с материковой ветроэнергетикой по стоимости производства электричества (LCOE) сможет только комбинированная генерация на основе природного газа [12].

За последние два года, помимо указанных работ, вышло несколько авторитетных исследований по сравнительной экономике энергетики, в которых в целом подтверждаются вышеназванные заключения о высокой ценовой конкурентоспособности ветроэнергетики.

Сегодня не существует ни одного исследователя, который бы сомневался, что капитальные затраты и стоимость производства электричества с помощью ВИЭ будут падать и дальше, а сложность и стоимость добычи ископаемого топлива, наоборот, возрастать. Поэтому в ближайшие годы электричество, производимое ветряными электростанциями, станет устойчиво дешевле продукции углеводородной генерации практически во всех регионах планеты.

В качестве одного из методов сравнительного анализа экономики генерирующих объектов разных типов предлагается учёт в расчётах внешних эффектов (экстерналий). Удельные (на единицу вырабатываемой электроэнергии) выбросы парниковых газов в возобновляемой энергетике на порядок меньше, чем в углеводородной. По данным Межправительственной группы экспертов по изменению климата при ООН, полученным на основе обобщающего анализа более 50 научных работ, выбросы СО2экв. грамм/кВт*ч (медиана): Уголь: 1001, нефть: 840, природный газ: 469, солнце (фотоэлектрика): 48, солнце (гелиотермальная): 22, ветер: 12. Подчеркну, что речь идёт о расчётах на основе жизненного цикла. Таким образом, по данным показателям газ «вреднее» ветроэнергетики в 39 раз, уголь – в 83 раза [13].

Для монетарной оценки экстерналий используются соответствующие модели, учитывающие экспертные заключения. Одна из таких моделей под названием «Методика оценки внешних издержек для окружающей среды» предложена Министерством окружающей среды Германии. В соответствии с его подсчетами внешние эффекты производства электроэнергии составляют для каменного угля — 8,9, бурого угля — 10,7, природного газа — 4,9, ветра — 0,3, гидроэнергетики — 0,2, солнечной энергетики — 1,2, биомассы — 3,8 евроцентов на выработанный киловатт-час [14].

Корпорация Siemens, активно вовлеченная в энергетическое машиностроение и являющаяся крупным производителем ветроэнергетических установок, разработала «всеохватывающий» интегральный экономический индикатор, учитывающий наряду с LCOE внешние эффекты, субсидии, занятость и еще ряд факторов, связанных с процессом производства электроэнергии. Данный показатель был назван «Общественная стоимость производства электричества» (Society’s cost of electricity – SCOE) [15]. По расчетам Siemens, проведенным для рынка Великобритании, в 2025 г. самым низким SCOE будут обладать обе «ветви» ветроэнергетики, и даже фотоэлектрика в условиях Туманного Альбиона оказывается дешевле атомной, угольной и газовой генерации.

Читайте также: Уникальные ветрогенераторы уральских разработчиков заработают на Мальдивах

Если ветроэнергетика столь конкурентоспособна, зачем её поддерживать?

Для начала отметим, что абсолютно любой крупный, «жизнеобеспечивающий» сектор экономики везде является объектом регулирования и государственной поддержки.

Международное энергетическое агентство «оценивает, что субсидии на потребление ископаемого топлива во всем мире составили в 2013 г. $548 млрд... Эти субсидии более чем в четыре раза выше объемов субсидий возобновляемым источникам энергии»[16].

В мае 2015 года Международный валютный фонд (МВФ) опубликовал рабочий доклад под названием «Насколько велики глобальные энергетические субсидии?» В расчетах исследователей МВФ, охватывающих уголь, нефтепродукты, природный газ и электроэнергию, учитывались экстерналии (внешние эффекты), о которых мы говорили выше. Выводы авторов доклада «шокирующие»: «энергетические субсидии значительно выше, чем оценивалось ранее: - $ 4,9 трлн (6,5 процента мирового ВВП) в 2013 г, и по прогнозам, достигнут $ 5,3 трлн (6,5 процента мирового ВВП) в 2015 г», что эквивалентно $ 10 млн в минуту[17]. Методика, используемая специалистами МВФ, может кому-то показаться спорной, но это предмет отдельной специальной дискуссии.

Вспомним, наконец, слова нашего Нобелевского лауреата, Ж. И. Алферова: если бы на развитие альтернативной энергетики было потрачено хотя бы 15% из тех средств, что мы вложили в энергетику атомную, то АЭС нам сейчас вообще были бы не нужны [18].

Всякая новая важная отрасль экономики требует умного регулирования и поддержки. В то же время объемы поддержки ветроэнергетики несравнимы с теми ресурсами, которые направлялись и направляются на развитие атомной и сырьевых отраслей.

Вопросы экономики и государственной поддержки подробно раскрыты в книге автора «Мировая энергетическая революция» [19].

Нестабильная генерация

Одним из основных недостатков ветряной и солнечной энергетики считается нестабильный, погодозависимый характер генерации.

Эта проблема «нестабильности» уже сегодня имеет экономически оправданное технологическое решение. Современный уровень развития сетей, систем накопления и хранения энергии не создает значимых препятствий для дальнейшего развития возобновляемой энергетики [20].

В качестве аккумулятора достаточно весомых объемов генерации ВИЭ вполне может выступать существующая электрическая сеть. Опыт стран, в которых доля «переменчивой» генерации ВИЭ превысила 5%, 10% и более от общего объема производимой электроэнергии (например, Дания, Ирландия, Германия, Испания, Португалия, Великобритания), показывает, что сеть «проглатывает» такое количество чистой энергии без каких-либо проблем. Более того, исследование, проведенное Международным энергетическим агентством, подчеркивает, что большая доля переменчивой энергии ВИЭ (до 45%) может быть интегрирована в энергетическую систему без существенного увеличения затрат [21]. Расширение сетей передачи и распределения электроэнергии, их модернизация рассматриваются в качестве наиболее экономически эффективного способа подстройки энергетической системы под возрастающую долю ВИЭ — сеть существенно дешевле, чем аккумуляторные системы. «Новые технологии хранения станут необходимыми, когда доля возобновляемых источников энергии превысит 70%» [22], — считают немецкие авторы из Agora Energiewende.

Кроме того, наряду с распространенными сегодня системами аккумулирования энергии (ГАЭС), активно разрабатываются и уже применяются иные способы, например, аккумуляторные системы или технологии Power-to-Gas («энергия – газ»). Совершенствуется и управление сетями, внедряются технологии «умных сетей» (Smart Grids).

Нет никаких сомнений, что технологическая способность рационально управлять любыми объемами «нестабильной» генерации будет обеспечиваться по мере развития ВИЭ.

По теме: В Европе выработано энергии ветра больше, чем получено от газа и угля в 2014

Ключевой игрок энергетической системы 2050

Принимая во внимание растущую экономическую привлекательность энергии из ветра в сочетании с практически неограниченными ветроэнергетическими ресурсами планеты, теоретически возможно снабжение всего человечества электроэнергией, практически полностью произведенной только на основе ветра. Исследование Гарвардского университета, основанное на весьма консервативных допущениях, показывает, что потенциал ветроэнергетики примерно в 40 раз превышает глобальное потребление электричества [23].

Среднегодовой темп роста мощностей мировой ветроэнергетики начиная с 2009 г. составляет 21,4% в год, а за последнее десятилетие ее установленная мощность выросла в восемь раз [24]. На конец 2014 г. она составила 370 ГВт, и, предположительно, к 2020 г. достигнет 1000 ГВт [25].

Обобщение различных прогнозов и сценариев развития энергетических рынков и ветряного сегмента возобновляемой энергетики показывает интервал от 10,3% до 30,6% — такую долю в мировом производстве электричества может занять ветроэнергетика к 2050 г. [26]. При этом во многих технологически развитых странах доля ветроэнергетики будет приближаться к верхней границе указанного интервала или даже превосходить ее. Дания, как мы видели, уже производит порядка 40% электричества посредством энергии ветра, а по мнению Министерства энергетики США в 2050 г. ветроэнергетика может вырабатывать 35% американской электроэнергии [27]. Здесь, как и в других сегментах возобновляемой энергетики, дальнейшее развитие во многом будет зависеть от совершенствования технологий и развития сравнительных экономических преимуществ.

Ветроэнергетика в России

Нужна ли России ветроэнергетика? Ставить вопрос таким образом – то же самое, что спрашивать, «нужен ли России автомобильный транспорт».

Развитие ВИЭ – долгосрочная стратегическая тенденция развития мировой энергетики. Использование экономически эффективных и экологичных способов возобновляемой генерации со временем станет необходимостью.

И здесь есть только два пути: либо мы развиваем национальную науку, инженерную культуру и производство, либо закупаем технику за рубежом. Сегодня Россия идёт по второму пути, который, однако, постепенно заканчивается. Экономическая модель «нефть в обмен на остальное» не имеет перспектив.

В СССР существовали передовые для того времени наработки в области ветроэнергетики, во второй половине 80-х принимались грандиозные планы её развития. Наработки потеряли свою актуальность, школа потеряна безвозвратно. Нужно начинать фактически с начала (к сожалению, такая ситуация характерна не только для сектора ВИЭ, в традиционном энергетическом машиностроении зависимость от импортных поставок также высока).

Распоряжение Правительства РФ № 1472-р от 28 июля 2015, касающееся стимулирования производства электроэнергии с использованием ВИЭ, дарит надежду, что в России будет развиваться не только ветроэнергетика, как способ производства электроэнергии, но и её технологическая и производственная база.

В то же время отсутствие как общей идеологии, так и конкретных стратегий развития науки, техники и промышленного производства на гос. уровне, а также безответственная финансовая политика, которая не ориентирована на экономическое развитие страны, создают существенные преграды.

Автор статьи: Владимир Сидорович, Директор Института энергоэффективных технологий в строительстве

[1] http://www.eia.gov/todayinenergy/detail.cfm?id=20292

[2] Wind in Power, 2014 European Statistics, EWEA, February 2015, p.6

[3] REN21 Renewables Global Status Report 2015, p. 70

[4] http://www.enerdata.net/enerdatauk/press-and-publication/energy-news-001/china-added-92-gw-wind-and-77-gw-solar-1st-half-2015_33479.html

[5] http://www.windpowermonthly.com/article/1338971/china-connect-215gw-new-capacity-2015

[6] http://www.unendlich-viel-energie.de/strommix-deutschland-2014

[7] REN21 Renewables Global Status Report 2015, p. 70

[8] REN21 Renewables Global Status Report 2015, p. 70

[9] REN21 Renewables Global Status Report 2015, p. 72

[10] http://www.ewea.org/wind-energy-basics/facts/

[11] http://www.irena.org/News/Description.aspx?NType=A&mnu=cat&PriMenuID=16&CatID=84&News_ID=386

[12] http://www.eia.gov/forecasts/aeo/electricity_generation.cfm#1

[13] http://shrinkthatfootprint.com/greenest-electricity-source

[14] https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/hgp_umweltkosten.pdf

[15] www.siemens.com/energy/wind/scoe

[16] http://www.worldenergyoutlook.org/resources/energysubsidies/

[17] IMF Working Paper “How Large Are Global Energy Subsidies?” Prepared by David Coady, Ian Parry, Louis Sears, and Baoping Shang, International Monetary Fund, May 2015

[18] http://www.vokrugsveta.ru/vs/article/2888/

[19] http://www.alpinabook.ru/catalog/EconomicsPoliticsSociology/2417716/

[20] http://www.alpinabook.ru/catalog/EconomicsPoliticsSociology/2417716/

[21] The Power of Transformation. Wind, Sun and the Economics of Flexible Power Systems, IEA, 2014, p.13

[22] 12 Insights on Germany’s Energiewende. A Discussion Paper Exploring Key Challenges for the Power Sector, Agora Energiewende, February 2013 p.15

[23] Global potential for wind-generated electricity http://www.pnas.org/content/106/27/10933.abstract

[24] Renewables 2014 Global Status Report, p.56

[25] http://www.dw.de/globaler-trend-hin-zu-erneuerbarer-energie/a-16519172

[26] http://www.nature.com/nclimate/journal/v4/n8/fig_tab/nclimate2269_T1.html

[27] http://www.usatoday.com/story/news/nation/2015/03/12/obama-wind-power-report-energy-department/70160824/

Источник: rawi.ru

Понравилась статья? Поделитесь ею и будет вам счастье!

Loading...

ecotechnica.com.ua

Ветроэнергетика — Википедия

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Ветропарк в Эстонии

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием активности Солнца. Ветроэнергетика является бурно развивающейся отраслью. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта[1] и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов (КИУМ) в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии)[2]. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %; Ирландии — 19 %; в Германии — 8 %; в ЕС в целом — 7,5 %[3]. В 2014 году 85 стран мира использовали ветроэнергетику на коммерческой основе. По итогам 2015 года в ветроэнергетике занято более 1 000 000 человек во всем мире[4] (в том числе 500 000 в Китае и 138 000 в Германии)[5].

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии[6][7][8]. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

История использования энергии ветра[править | править код]

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами[9].

Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI века единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашёл способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.

— Маркс К. Машины: применение природных сил и науки.

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы: Толедо — 1526 год, Глостер — 1542 год, Лондон — 1582 год, Париж — 1608 год и так далее.

В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-х в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра[9].

В России[править | править код]

В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[10].

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт⋅ч/год. Экономический потенциал составляет примерно 260 млрд кВт⋅ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России[11].

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Самые крупные ветроэлектростанции России находятся в Крыму: Донузлавская ВЭС (суммарная мощность 18,7 МВт), Останинская ВЭС («Водэнергоремналадка») (26 МВт), Тарханкутская ВЭС (15,9 МВт) и Восточно-Крымская ВЭС. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт.

Ещё одна крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SEAS Energi Service A.S.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч.

В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[11]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008—2010 годах не превышала 0,4 млн кВт⋅ч.

В Республике Калмыкия в Приютненском районе, компанией ООО «АЛТЭН» была построена ветровая электростанция мощностью 2,4 МВт, суммарной выработкой 10 млн кВт⋅ч в год. ООО «АЛТЭН» управляет активами установленного ветропарка, а также проводит мероприятия по его обслуживанию и эксплуатации совместно с компанией Vensys-Elektrotechnik.

В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край, Валаамской ВЭС 4 МВт Карелия, Приютненской ВЭС 51 МВт Республика Калмыкия.

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[12].

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Современные методы генерации электроэнергии из энергии ветра[править | править код]

Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности земли/моря являются турбулентными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 2 км, но резко снижается уже на высотах больше 100 метров.[13] Высота расположения генератора выше этого приземного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[14] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.[15]

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике[16].

В январе 2014 года датская компания Vestas начала тестировать турбину V-164 мощностью 8 МВт. Первый контракт на поставку турбин был заключен в конце 2014 года. На сегодняшний день V-164 — наиболее мощный ветрогенератор в мире. Ведутся разработки генераторов мощностью более 10 МВт.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Дания, Нидерланды и Германия собираются заложить искусственный остров в Северном море для выработки ветровой энергии. Проект планируется реализовывать на самой крупной отмели Северного моря Доггер-банка (в 100 километрах от восточного побережья Англии), так как здесь удачно сочетаются следующие факторы: относительно низкий уровень моря и мощные потоки воздуха. Остров площадью в шесть квадратных километров будет оборудован ветряными фермами с тысячами мельниц, также там будут построены взлетно-посадочная полоса и порт. Главная инновация данного строительства заключается в концентрации на максимально низкой стоимости транзита энергии. Основной целью проекта является создание ветропарка, который может вырабатывать до 30 Гвт дешевой электроэнергии. Долгосрочные планы предполагают увеличение этого количества до 70-100 Гвт, что позволит обеспечивать энергией около 80 миллионов жителей Европы, в том числе Германии, Нидерландов и Дании. [17]

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Также оффшорная электростанция включает распределительные подстанции и подводные кабели до побережья.

Помимо свай для фиксации турбин могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.[18]

Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика является одним из наиболее дорогих источников электричества. Стоимость производства электричества на офшорных ветроэлектростанциях колеблется от 200 до 125 долларов США / МВт*ч. MHI-Vestas, Siemens и DONG Energy подписали соглашение, в соответствии с которым компании стремятся снизить к 2020 году стоимость офшорного электричества ниже 120 долларов США / МВт*ч.

Статистика по использованию энергии ветра[править | править код]

К началу 2015 года общая установленная мощность всех ветрогенераторов составила 369 гигаватт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ[19].

Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов[20][21].

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.

Суммарные установленные мощности, МВт по данным WWEA. 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227 282400 318529

В 2014 году 39 % электроэнергии в Дании вырабатывалось из энергии ветра.

В 2014 году ветряные электростанции Германии произвели 8,6 % от всей произведённой в Германии электроэнергии.

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % электроэнергии страны. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.[22]

В декабре 2014 года ветроэнергетика обеспечила 164 % электричества, потребляемого домохозяйствами Шотландии[23]. 28 октября 2013 ветрогенераторы Дании произвели 122 процента от потребляемого электричества[24]. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии[25]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны[26].

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Германия планирует к 2025 году производить 40-45 % электроэнергии из возобновляемых источников энергии. Ранее Германия устанавливала цель 12 % электричества к 2010 году. Эта цель была достигнута в 2007 году.

Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики[27].

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6000 МВт — офшорных[28].

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которую выработают ветряные электростанции, составит 494,7 Тв-ч.[29][30].

В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году[31]. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 ГВт установленной мощности уже в 2010 году.[32]

Индия планировала к 2012 году увеличить свои ветряные мощности в 2 раза (на 6 тысяч МВт) в сравнении с 2008 годом[33]. Эта цель была достигнута.

Венесуэла за 5 лет с 2010 года намеревалась построить ветряных электростанций на 1500 МВт.[34]. Цель не была достигнута.

Экономические аспекты ветроэнергетики[править | править код]

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива[править | править код]

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии[править | править код]

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра[35].

Скорость ветра Себестоимость (для США, 2004 год)
7,16 м/c 4,8 цента/кВт·ч;
8,08 м/с 3,6 цента/кВт·ч;
9,32 м/с 2,6 цента/кВт·ч.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 9 — 30 цента/кВт·ч. Средняя стоимость электричества в Китае 13 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

Экономика ветроэнергетики в России[править | править код]

Солнечный ветрогенератор для уличного освещения

В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 2005 дней], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и солнечных батарей. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 1946 дней], пункты наблюдения, погодные и метеостанции и так далее).

Другие экономические проблемы[править | править код]

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

  • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора впараллель)
  • Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
  • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

  • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
  • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
  • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома в России.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

Экологические аспекты ветроэнергетики[править | править код]

Выбросы в атмосферу[править | править код]

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота[36].

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн[37].

Влияние на климат[править | править код]

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее[38][39].

Согласно моделированию Стэндфордского университета, большие оффшорные ветроэлектростанции могут существенно ослабить ураганы, уменьшая экономический ущерб от их воздействия[40].

Шум[править | править код]

Ветряные энергетические установки производят две разновидности шума:

  • механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

Источник шума Уровень шума, дБ
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м 105
Шум от отбойного молотка в 7 м 95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м 35—45
Шумовой фон ночью в деревне 20—40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Низкочастотные вибрации[править | править код]

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.[41]

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей[править | править код]

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.[42]

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие[править | править код]

Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли[править | править код]

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью[43], что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам[править | править код]

Таблица: Вред, наносимый животным и птицам. Данные AWEA[44].

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков[45].

Использование водных ресурсов[править | править код]

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала[46]. Чем крупнее ветроустановка, тем больше помех она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

  1. ↑ http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf
  2. ↑ Bernard Chabot Analysis of the Global Electricity Production up to 2014
  3. ↑ REN21: Renewables Global Status Report 2015
  4. ↑ http://www.gwec.net/gwec-lauds-1-1-million-workers-in-wind/
  5. ↑ Владимир Сидорович. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир. — М.: Альпина Паблишер, 2015. — 208 с. — ISBN 978-5-9614-5249-5.
  6. ↑ Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications. eirgrid.com (February 2004). Проверено 22 ноября 2010. Архивировано 25 августа 2011 года.
  7. ↑ "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано 25 августа 2011 года.
  8. ↑ Claverton-Energy.com (28 августа 2009). Проверено 29 августа 2010. Архивировано 25 августа 2011 года.
  9. ↑ 1 2 Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7.
  10. ↑ Использование энергии ветра в СССР // Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. — С. 7.
  11. ↑ 1 2 Энергетический портал. Вопросы производства, сохранения и переработки энергии
  12. ↑ http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
  13. ↑ http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
  14. ↑ http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
  15. ↑ http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
  16. ↑ Edward Milford BTM Wind Market Report 20 Июль 2010 г.
  17. ↑ Германия участвует в создании острова, Germania.one.
  18. ↑ Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 17 февраля 2018.
  19. ↑ Annual installed global capacity 1996—2011
  20. ↑ US and China in race to the top of global wind industry
  21. ↑ https://web.archive.org/web/20100215003032/http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
  22. ↑ БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
  23. ↑ 2014 a «massive year» for wind and solar power in Scotland — new data published — WWF UK
  24. ↑ Postcard From the Grid’s Future: Record-Breaking Wind Integration in Denmark : Greentech Media
  25. ↑ Wind power — clean and reliable
  26. ↑ Испания получила рекордную долю электричества от ветра
  27. ↑ Denmark aims to get 50 % of all electricity from wind power
  28. ↑ John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
  29. ↑ [tt_news=1892&tx_ttnews[backPid]=1&cHash=05ee83819c7f18864985e61c3fd26342 EU will exceed renewable energy goal of 20 percent by 2020] (англ.). Проверено 21 января 2011.
  30. ↑ EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
  31. ↑ Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy», Energy Policy, Vol. 35, Isue 7, July 2007
  32. ↑ China’s Galloping Wind Market (англ.). Проверено 21 января 2011.
  33. ↑ India to add 6,000 MW wind power by 2012 (англ.). Проверено 21 января 2011. Архивировано 25 августа 2011 года.
  34. ↑ Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
  35. ↑ American Wind Energy Association. The Economics of Wind Energy
  36. ↑ Wind Energy and Wildlife: The Three C’s
  37. ↑ Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
  38. ↑ D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2004. — Iss. 46.
  39. ↑ Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal. — 2009. — Iss. 1.
  40. ↑ Offshore wind farms could tame hurricanes, Stanford-led study says
  41. ↑ https://web.archive.org/web/20071012073209/http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
  42. ↑ Wind Energy in Cold Climates
  43. ↑ Wind energy Frequently Asked Questions Архивировано 19 апреля 2006 года.
  44. ↑ Энергия ветра: мифы против фактов
  45. ↑ MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
  46. ↑ Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года
  • Д. де Рензо, В. В. Зубарев Ветроэнергетика. Москва. Энергоатомиздат, 1982
  • Е. М. Фатеев Вопросы ветроэнергетики. Сборник статей. Издательство АН СССР, 1959

Отрасли промышленности

lookup-api.apple.com

Ветроэнергетика | Солнечное Вики | FANDOM powered by Wikia

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Файл:Elektrituulikud.jpg

Энергию ветра относят к возобновляемым видам энергии, так как она является следствием активности Солнца. Ветроэнергетика является бурно развивающейся отраслью. К началу 2015 года общая установленная мощность всех ветрогенераторов составила 369 гигаватт[1]. В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии)[2]. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2014 год в Дании с помощью ветрогенераторов производится 39 % всего электричества; в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %; Ирландии — 19 %; в Германии — 8 %; в ЕС — 7,5 %[3]. В 2014 году 85 стран мира использовали ветроэнергетику на коммерческой основе.

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии[4][5][6]. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

Файл:Windenergy.jpg

    История использования энергии ветра

    Файл:080606 Tjasker Meestersveen Zeijen NL.jpg Файл:Campo de Criptana Molinos de Viento 1.jpg

    Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами[7].

    Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI века единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашёл способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.

    — Маркс К. Машины: применение природных сил и науки.

    Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

    В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы: Толедо — 1526 год, Глостер — 1542 год, Лондон — 1582 год, Париж — 1608 год и так далее.

    В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

    Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

    В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

    Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-ых в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра[7].

    В России

    В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[8].

    Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт⋅ч/год. Экономический потенциал составляет примерно 260 млрд кВт⋅ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России[9].

    Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

    Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.

    Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

    Самая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SEAS Energi Service A.S.

    На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч.

    В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[9]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008—2010 годах не превышала 0,4 млн кВт⋅ч.

    В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт⋅ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт⋅ч.

    В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

    На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

    Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

    Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.

    Файл:Avvpromashka.jpg

    Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

    В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[10].

    Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

    В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

    Современные методы генерации электроэнергии из энергии ветра

    Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

    Воздушные потоки у поверхности земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров.[11] Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[12] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.[13]

    В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике[14].

    В январе 2014 года датская компания Vestas начала тестировать турбину V-164 мощностью 8 МВт. Первый контракт на поставку турбин был заключен в конце 2014 года. На сегодняшний день V-164 — наиболее мощный ветрогенератор в мире. Ведутся разработки генераторов мощностью более 10 МВт.

    Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

    Офшорная ветроэнергетика

    Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Также оффшорная электростанция включает распределительные подстанции и подводные кабели до побережья.

    Помимо свай для фиксации турбин могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

    5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.[15]

    Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-ых годах, офшорная ветроэнергетика является одним из наиболее дорогих источников электричества. Стоимость производства электричества на офшорных ветроэлектростанциях колеблется от 200 до 125 долларов США / МВт.ч. MHI-Vestas, Siemens и DONG Energy подписали соглашение, в соответствии с которым компании стремятся снизить к 2020 году стоимость оффшорного электричества ниже 120 долларов США / МВт.ч.

    Статистика по использованию энергии ветра

    К началу 2015 года общая установленная мощность всех ветрогенераторов составила 369 гигаватт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ[16].

    Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов[17][18].

    В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.

    Файл:EnerconE70-Magedeburg 2005-Steinkopfinsel01.jpg

    Таблица: Суммарные установленные мощности, МВт, по странам мира 2005—2011 г. Данные Европейской ассоциации ветроэнергетики[19] и GWEC[20].[21]

    Страна2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. 2011 г. МВт. 2012 г. МВт.2013 г. МВт2014 г. МВт
    Китайская Народная Республика Китай12602405605012210251044180062733 7556491424114763
    Соединённые Штаты Америки США9149116031681825170351594020046919 600076109165879
    Германия Германия18428206222224723903257772721429060 313323425039165
    Испания Испания10028116151514516754191492067621674 227962295922987
    Индия Индия 4430627075809645108331306416084 184212015022465
    Великобритания Великобритания1353196223893241405152036540 84451053112440
    Италия Италия1718212327263736485057976737 814485528663
    Франция Франция757156724543404449256606800 719682549285
    Канада Канада683145118462369331940085265 620078039694
    Дания Дания 3122313631253180348237523871 416247724845
    Португалия Португалия1022171621502862353537024083 452547244914
    Швеция Швеция5105717881021156021632907 374544705425
    Бразилия Бразилия29237247,13416069321509 250834565939
    Польша Польша7315327647272511071616 249733903834
    Австралия Австралия579817817,31306166820202224 258432393806
    Турция Турция20,15014643380113291799 231229593763
    Нидерланды Нидерланды1224155817462225222922372328 239126932805
    Япония Япония1040139415381880205623042501 261426612789
    Румыния Румыния982 190526002954
    Ирландия Ирландия4967468051002126017481631 173820372272
    Мексика Мексика 137019922551
    Греция Греция573746871985108712081629 174918651980
    Австрия Австрия81996598299599510111084 137816842095
    Бельгия Бельгия167,41942873845639111078 137519591959
    Новая Зеландия Новая Зеландия 623623623
    Китайская Республика Тайвань 564614633
    Болгария Болгария143670120177375612 674691
    Республика Корея Южная Корея 483561609
    Египет Египет 550550610
    Норвегия Норвегия270333428431441512704 704811819
    Чили Чили 205335836
    Венгрия Венгрия17,56165127201329329 329329329
    Таиланд Таиланд 112223223
    Аргентина Аргентина 167218271
    Чехия Чехия29,554116150192215217 260269282
    Финляндия Финляндия8286110140146197 199288447627
    Эстония Эстония33325878142149184 269280302
    Литва Литва748505491154179 263279279
    Украина Украина77,38689909487151 302371498
    Россия Россия1415,516,516,51415,4

    Таблица: Суммарные установленные мощности, МВт по данным WWEA.

    199719981999200020012002200320042005200620072008200920102011 2012 2013
    7,4759,66313,69618,03924,32031,16439,29047,68659,00473,90493,849120,791157,000196,630237,227282,400318,529

    В 2014 году 39 % электроэнергии в Дании вырабатывалось из энергии ветра.

    В 2014 году ветряные электростанции Германии произвели 8,6 % от всей произведённой в Германии электроэнергии.

    В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % электроэнергии страны. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.[22]

    В декабре 2014 года ветроэнергетика обеспечила 164 % электричества, потребляемого домохозяйствами Шотландии[23]. 28 октября 2013 ветрогенераторы Дании произвели 122 процента от потребляемого электричества[24]. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии[25]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны[26].

    Перспективы

    Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

    Германия планирует к 2025 году производить 40-45 % электроэнергии из возобновляемых источников энергии. Ранее Германия устанавливала цель 12 % электричества к 2010 году. Эта цель была достигнута в 2007 году.

    Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики[27].

    Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт — офшорных[28].

    В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч.[29][30].

    В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году[31]. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 Гвт установленной мощности уже в 2010 году.[32]

    Индия планировала к 2012 году увеличить свои ветряные мощности в 2 раза (на 6 тысяч МВт) в сравнении с 2008 годом [33]. Эта цель была достигнута.

    Венесуэла за 5 лет с 2010 года намеревалась построить ветряных электростанций на 1500 МВт.[34]. Цель не была достигнута.

    Экономические аспекты ветроэнергетики

    Файл:Lktrwnpck.jpg

    Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).

    Экономия топлива

    Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

    Себестоимость электроэнергии

    Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра[35].

    Скорость ветра Себестоимость (для США, 2004 год)
    7,16 м/c 4,8 цента/кВт·ч;
    8,08 м/с 3,6 цента/кВт·ч;
    9,32 м/с 2,6 цента/кВт·ч.

    Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 4,5 — 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

    При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

    В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

    Экономика ветроэнергетики в России

    Файл:Солнечный ветрогенератор Хабаровский край.JPG

    В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 2008 дней], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и солнечных батарей. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 1949 дней], пункты наблюдения, погодные и метеостанции и так далее).

    Другие экономические проблемы

    Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

    Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

    По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

    Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

    Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

    Экономика малой ветроэнергетики

    В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

    • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель)
    • Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
    • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

    В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

    Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

    • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
    • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
    • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

    В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

    • Отопление является основным энергопотребителем любого дома в России.
    • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
    • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
    • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
    • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

    Экологические аспекты ветроэнергетики

    Выбросы в атмосферу

    Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота[36].

    По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн[37].

    Влияние на климат

    Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее[38][39].

    Согласно моделированию Стэндфордского университета, большие оффшорные ветроэлектростанции могут существенно ослабить ураганы, уменьшая экономический ущерб от их воздействия[40].

    Шум

    Ветряные энергетические установки производят две разновидности шума:

    • механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
    • аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

    В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

    Источник шумаУровень шума, дБ
    Болевой порог человеческого слуха 120
    Шум турбин реактивного двигателя на удалении 250 м 105
    Шум от отбойного молотка в 7 м 95
    Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м65
    Шумовой фон в офисе 60
    Шум от легковой автомашины при скорости 64 км/ч55
    Шум от ветрогенератора в 350 м35—45
    Шумовой фон ночью в деревне 20—40

    В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

    Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

    Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

    Низкочастотные вибрации

    Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.[41]

    Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

    Обледенение лопастей

    При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.[42]

    Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

    Визуальное воздействие

    Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

    В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

    Использование земли

    Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью[43], что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

    Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

    Вред, наносимый животным и птицам

    Таблица: Вред, наносимый животным и птицам. Данные AWEA[44].

    Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков[45].

    Использование водных ресурсов

    В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

    Радиопомехи

    Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала[46]. Чем крупнее ветроустановка, тем больше помех она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

    См. также

    Источники

    1. ↑ Global Statistics — Gwec
    2. ↑ Bernard Chabot Analysis of the Global Electricity Production up to 2014
    3. ↑ REN21: Renewables Global Status Report 2015
    4. ↑ Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications. eirgrid.com (February 2004). Проверено 22 ноября 2010. Архивировано из первоисточника 26 августа 2011.
    5. ↑ "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано из первоисточника 26 августа 2011.
    6. ↑ Claverton-Energy.com (28 августа 2009). Проверено 29 августа 2010. Архивировано из первоисточника 26 августа 2011.
    7. ↑ 7,07,1Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7.
    8. ↑ Использование энергии ветра в СССР // Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. — С. 7.
    9. ↑ 9,09,1Энергетический портал. Вопросы производства, сохранения и переработки энергии
    10. ↑ http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
    11. ↑ http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
    12. ↑ http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
    13. ↑ http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
    14. ↑ Edward Milford BTM Wind Market Report 20 Июль 2010 г.
    15. ↑ Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 20 февраля 2018.
    16. ↑ Annual installed global capacity 1996—2011
    17. ↑ US and China in race to the top of global wind industry
    18. ↑ http://web.archive.org/web/20100215003032/http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
    19. ↑ «Wind in power. 2011 European statistics»
    20. ↑ «Global Wind Statistics 2011»
    21. ↑ http://www.gwec.net/wp-content/uploads/2014/02/GWEC-PRstats-2013_EN.pdf Global Wind Statistics 2013
    22. ↑ БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
    23. ↑ 2014 a «massive year» for wind and solar power in Scotland — new data published — WWF UK
    24. ↑ Postcard From the Grid’s Future: Record-Breaking Wind Integration in Denmark : Greentech Media
    25. ↑ Wind power — clean and reliable
    26. ↑ Испания получила рекордную долю электричества от ветра
    27. ↑ Denmark aims to get 50 % of all electricity from wind power
    28. ↑ John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
    29. ↑ Ошибка цитирования Неверный тег <ref>; для сносок ewea не указан текст
    30. ↑ EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
    31. ↑ Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy», Energy Policy, Vol. 35, Isue 7, July 2007
    32. ↑ China’s Galloping Wind Market (англ.). Проверено 21 января 2011.
    33. ↑ India to add 6,000 MW wind power by 2012 (англ.). Проверено 21 января 2011. Архивировано из первоисточника 26 августа 2011.
    34. ↑ Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
    35. ↑ American Wind Energy Association. The Economics of Wind Energy
    36. ↑ Wind Energy and Wildlife: The Three C’s
    37. ↑ Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
    38. ↑ D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2004. — В. 46.
    39. ↑ Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal. — 2009. — В. 1.
    40. ↑ Offshore wind farms could tame hurricanes, Stanford-led study says
    41. ↑ http://web.archive.org/web/20071012073209/http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
    42. ↑ Wind Energy in Cold Climates
    43. ↑ Wind energy Frequently Asked Questions
    44. ↑ Энергия ветра: мифы против фактов
    45. ↑ MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
    46. ↑ Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

    Литература

    • Д. де Рензо, В. В. Зубарев Ветроэнергетика. Москва. Энергоатомиздат, 1982
    • Е. М. Фатеев Вопросы ветроэнергетики. Сборник статей. Издательство АН СССР, 1959

    Ссылки

    ru.solar.wikia.com

    кто есть кто. Энергетика. Статьи

    Использование энергии ветра – одно из перспективных направлений современной энергетики. Последние годы наблюдается массовое увеличение размеров и количества ветропарков во всех прогрессивных странах мира. «Ветряки» становятся выше, а их лопасти длиннее и легче, что позволяет им работать даже при небольшой силе ветра. Сооружения устанавливаются повсеместно: в лесах, полях, на побережьях, в прибрежных водах морей и океанов (оффшорные парки). Даже в густонаселенных мегаполисах архитекторы умудряются внедрить ветрогенераторы в конструкции небоскребов, переведя их на частичное самообеспечение.

    Для координации усилий и быстрого реагирования на изменения запросов рынка ветровой энергии создана международная некоммерческая организация WWEA (World Wind Energy Association) со штаб-квартирой в Германии. Сегодня ассоциация объединяет интересы более чем сотни стран-участниц. Задачей WWEA является постоянный мониторинг потребностей и предложений в области возобновляемой энергетики, проведение исследований и предоставление консультаций заинтересованному сообществу.

    Ассоциация отслеживает развитие ветроэнергетической отрасли во всех странах и составляет рейтинг ведущих потребителей и поставщиков соответствующего оборудования. В соответствии с информацией, опубликованной на сайте организации 10 февраля 2016 года, лидерами  в использовании альтернативной энергетики является следующая десятка стран.

    Десять стран с самой развитой ветроэнергетикой в 2015 году

    Китай. Суммарная выработка электроэнергии в ветропарках Китая в конце 2015 года приблизилась к 150 ГВт. При этом страна является относительно новым игроком на рынке ветроэнергетики. Но темпы роста промышленности диктуют свои условия, поэтому в ближайшие годы планируется дальнейшее наращивание ветроэнергетического потенциала страны. Заявленная страной цифра потребления ветровой энергии к 2020 году составляет 200 ГВт, однако, судя по ежегодному приросту 25-28%, этот срок наступит раньше.

    США. Развитие альтернативной энергетики, в том числе – ветровой, в Соединенных Штатах – постоянный, планомерный процесс. К началу 2016 года суммарная мощность американских ветропарков оценена в 74,35 ГВт. В силу довольно жесткой регуляторной политики, проводимой властями в энергетической области, в стране не наблюдается ярко выраженного бума строительства «ветряков», однако страна продолжает уверенно удерживать второе место.

    Германия является традиционным лидером в производстве ветровых турбин. Все самое инновационное оборудование в этой отрасли  производится здесь. Общая мощность собственных ветроэлектростанций Германии – на текущий момент - 45,2 ГВт, что составляет около трети суммарной производительности ветропарков всего Евросоюза. Прирост доли энергии, вырабатываемой «ветряками» в стране в 2015 году составил почти 10%.

    Испания занимает 4-е место в рейтинге стран с самой развитой ветроэнергетикой. В условиях угнетенного состояния экономики и нехватки собственных природных ресурсов альтернативные виды энергии являются стратегическим направлением развития страны. Суммарная мощность ветроэлектростанций страны составляет порядка 23 ГВт. В соответствии с данными WWEA за 2015 год в стране не наблюдалось существенного прироста доли энергии, вырабатываемой «ветряками».

    Индия, переживающая бурный рост промышленности, одновременно с этим испытает острую нехватку энергетических ресурсов. Жесткий дефицит традиционных источников в значительной степени сформировал взгляды государства на альтернативные виды получения энергии. Сегодня индийские ветропарки находятся на 5-м месте в мире по суммарной мощности с показателем, приближающимся к 25 ГВт. За 2015 год прирост доли ветровой энергии в стране составил около 10%.

    Развитие ветроэнергетики в таких странах ЕС, как Великобритания, Италия, Франция связано, в первую очередь, с постепенным отказом от использования атомной энергии. Страны не только занимаются активным строительством ветропарков, но также являются ведущими разработчиками и производителями турбинного оборудования, наряду с Германией. По состоянию на конец 2015 года мощности ветропарков составляют: Британия – 13,6 ГВт, Франция – 10,3 ГВт, Италия – 8,95 ГВт.

     

    Власти Канады способствуют внедрению альтернативных источников энергии путем предоставления льгот на установку и модернизацию соответствующего оборудования. Одни из передовых в этом отношении – штаты Онтарио и Новая Шотландия. На сегодняшний день суммарная мощность ветрогенерационных парков Канады составляет 11,2 ГВт, а прирост мощности в сравнении с 2014 годом составил 15,6%.

    В Бразилии ветропарки уже несколько лет являются неотъемлемой частью энергетической системы, наряду с солнечными станциями. Закупка электроэнергии государством производится путем проведения открытых аукционов, результаты которых подтверждают конкурентоспособность энергии, вырабатываемой «ветряками». Средняя стоимость киловатт-часа электричества для потребителя в Бразилии составляет порядка 0,05 доллара. В течение 2015 года страна показала абсолютный мировой рекорд по приросту ветроэнергетических мощностей, который составил 46,2%! Сегодня суммарная мощность ветроэлектростанций Бразилии составляет 8,7 ГВт.

    Дания. В силу своих небольших размеров страна не может конкурировать по общему количеству производимой «ветряками» энергии с такими гигантами как Китай и  США. Общая мощность ветропарков Дании составляет 5 ГВт,  поэтому в первую десятку рейтинга она не входит. Однако при пересчете количества киловатт ветровой энергии на душу населения, Дания является несомненным мировым лидером. Сегодня доля ветроэнергетики в общем энергетическом «котле» страны приближается к 30%, а к 2020 году планируется довести этот показатель до 50%. Также власти страны обнародовали программу, в соответствии с которой к 2050 году страна откажется от использования традиционных энергоресурсов полностью.

     

    Самые мощные ветропарки в мире

    Приведенные выше цифры показывают, что сегодня ветровая энергетика уже занимает значительную часть энергетической отрасли во всем мире. При этом в перспективе доля электроэнергии, вырабатываемой «ветряками» будет постоянно расти. В настоящее время крупнейшими поставщиками электроэнергии являются следующие ветропарки:

     

    • Ветропарк Alta Wind, Калифорния, США, производящий 1,55 ГВт чистой электроэнергии. Комплекс продолжает развиваться и уже к 2040 году планируется прирост его мощности до 4,0 ГВт;
    • ветроэнергетический комплекс Ganzu, расположенный на западе Китая и состоящий из нескольких крупных ветропарков, суммарная производительность которых составляет более 5 ГВт. В соответствии с планом развития, к 2020 году планируется наращивание мощностей до 20,0 ГВт;
    • Британский оффшорный массив London Array, расположенный дельте Темзы, - крупнейший проект такого рода. В настоящее время ветропарк на воде генерирует 0,63 ГВт электроэнергии. Суммарное количество электроэнергии, вырабатываемое всеми оффшорными ветроэлектростанциями Британии, составляет 3,6 ГВт. Предполагается, что к 2020 году этот показатель будет составлять 18,0 ГВт;
    •  крупнейший ветропарк Индии, Jaisalmer, генерирующий более 1 ГВт электроэнергии. Владелец ветропарка, компания Suzlon Energy, также является и производителем оборудования, занимающая на мировом рынке ветровых турбин около 7%.

    Основные игроки на рынке ветрогенерационного оборудования в 2015 году

    До недавнего времени лидерами в производстве «ветряков» считались европейские страны Германия и Дания, а также Соединенные Штаты Америки. Наиболее востребованные ветрогенерационные установки выпускались под марками Vestas (Дания) и Enercon (Германия). Эти компании занимаются выпуском турбин мощностью от 0,8 до 7,5 МВт. Американские ветрогенераторы General Electric имеют максимальную мощность 3,6 МВт.

    В последний год рекордную прибыль показали китайские производители. В частности, чистая прибыль компании Goldwind за 2015 год выросла почти на 56%, достигнув показателя 436 млн. USD. Общая мощность реализованных за год ветрогенераторов Goldwind составляет 7,8 ГВт. Однако утверждать, что традиционному доминированию Vestas и GE на мировом рынке положен конец нельзя, так как своим блестящим результатам Goldwind обязан, прежде всего, внутреннему рынку Китая.

    Общая мощность установленных турбин Vestas в 2015 году составила 7,3 ГВт. Для американцев GE этот показатель равен 5,9 ГВт. Немецкий производитель Enercon занимает в рейтинге четвертое место. Помимо Goldwind в десятку крупнейших производителей «ветряков» в 2015 году вошли еще 4 компании из Китая.

    Ветроэнергетика России

    Возможности России в генерации ветровой энергии (которые в настоящее время практически не используются) оцениваются в 30% от общего электроэнергетического потенциала страны. Суммарный показатель мощности ветропарков России, который планируется достигнуть к 2020 году составляет 3 ГВт.

    В настоящее время крупнейшие ветропарки России расположены в Крыму (общей мощностью около 60 МВт), в Калининградской области (5 МВт), на Чукотке и в Башкортостане (по 2,2 МВт). В различной степени готовности находятся проекты ветроэлектростанций мощностью от 30 до 70 МВт в Ленинградской, Калининградской областях, в Краснодарском крае, в Карелии, на Алтае и Камчатке.

    В самом ближайшем будущем планируется строительство ветропарка мощностью 35 МВт в Ульяновске. В июне 2016 года Российская ассоциация ветроиндустрии планирует провести конкурс проектов ветропарков суммарной мощностью 1,6 ГВт.

    Отрицательные стороны ветроэнергетики

    Сегодня никто не сомневается, что ветроэнергетика – один из наиболее перспективных видов получения «чистой», «зеленой» энергии. Помимо сокращения выбросов углекислого газа, который является обязательным атрибутом «традиционных» ТЭС и ТЭЦ, использование «ветряков» позволяет добиться значительного снижения электроэнергии для потребителя, а период окупаемости оборудования составляет 7-8 лет.

    Однако у ветровой энергетики есть и отрицательные стороны. В первую очередь – это зависимость от силы ветра, в результате чего поступления сгенерированного электричества в общую сеть происходят неравномерно. Поэтому полностью отказаться от использования традиционных ГЭС и ТЭС на данном этапе развития альтернативной энергетики не представляется возможным, так как они необходимы для стабилизации работы сетей.

    Вторым отрицательным фактором является то, что география возможного расположения «ветряков» очень часто не совпадает с географией потребителей. Данная проблема решается путем реконструкции или полного перекроя энергосистемы, что, в свою очередь связано со значительными временными и финансовыми затратами.

    Кроме этого необходимо сказать и о том, что мощные ветропарки также оказывают воздействие на окружающую среду: нагревают почву и влияют на микроклимат. Исследования, проведенные в США, показали, что прирост среднесуточной температуры на территории крупной ветрогенерационной станции за 9 лет составил 0,72 градуса Цельсия. При этом ученые связывают такой температурный скачок с тем, что в период проведения исследований с 2003 по 2011 годы, количество «ветряков» на станции возросло с 111 до 2358 штук.  По их мнению, при стабильном количестве установок прирост температуры также должен замедлится.

     

    maistro.ru

    Ветроэнергетика - Gpedia, Your Encyclopedia

    Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

    Ветропарк в Эстонии

    Энергию ветра относят к возобновляемым видам энергии, так как она является следствием активности Солнца. Ветроэнергетика является бурно развивающейся отраслью. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта[1] и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов (КИУМ) в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии)[2]. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %; Ирландии — 19 %; в Германии — 8 %; в ЕС в целом — 7,5 %[3]. В 2014 году 85 стран мира использовали ветроэнергетику на коммерческой основе. По итогам 2015 года в ветроэнергетике занято более 1 000 000 человек во всем мире[4] (в том числе 500 000 в Китае и 138 000 в Германии)[5].

    Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии[6][7][8]. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

    История использования энергии ветра

    Мельница со станиной

    Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами[9].

    Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI века единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашёл способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.

    — Маркс К. Машины: применение природных сил и науки.

    Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

    В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы: Толедо — 1526 год, Глостер — 1542 год, Лондон — 1582 год, Париж — 1608 год и так далее.

    В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

    Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

    В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

    Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-х в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра[9].

    В России

    В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор[10].

    Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт⋅ч/год. Экономический потенциал составляет примерно 260 млрд кВт⋅ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России[11].

    Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

    Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.

    Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

    Самые крупные ветроэлектростанции России находятся в Крыму: Донузлавская ВЭС (суммарная мощность 18,7 МВт), Останинская ВЭС («Водэнергоремналадка») (26 МВт), Тарханкутская ВЭС (15,9 МВт) и Восточно-Крымская ВЭС. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт.

    Ещё одна крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SEAS Energi Service A.S.

    На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч.

    В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района[11]. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008—2010 годах не превышала 0,4 млн кВт⋅ч.

    В Республике Калмыкия в Приютненском районе, компанией ООО «АЛТЭН» была построена ветровая электростанция мощностью 2,4 МВт, суммарной выработкой 10 млн кВт⋅ч в год. ООО «АЛТЭН» управляет активами установленного ветропарка, а также проводит мероприятия по его обслуживанию и эксплуатации совместно с компанией Vensys-Elektrotechnik.

    В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

    На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

    Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

    Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край, Валаамской ВЭС 4 МВт Карелия, Приютненской ВЭС 51 МВт Республика Калмыкия.

    Ветряной насос «Ромашка» производства СССР

    Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

    В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[12].

    Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

    В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

    Современные методы генерации электроэнергии из энергии ветра

    Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

    Воздушные потоки у поверхности земли/моря являются турбулентными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 2 км, но резко снижается уже на высотах больше 100 метров.[13] Высота расположения генератора выше этого приземного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[14] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.[15]

    В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. В 2009 году турбины класса 1,5 — 2,5 МВт занимали 82 % в мировой ветроэнегетике[16].

    В январе 2014 года датская компания Vestas начала тестировать турбину V-164 мощностью 8 МВт. Первый контракт на поставку турбин был заключен в конце 2014 года. На сегодняшний день V-164 — наиболее мощный ветрогенератор в мире. Ведутся разработки генераторов мощностью более 10 МВт.

    Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

    Дания, Нидерланды и Германия собираются заложить искусственный остров в Северном море для выработки ветровой энергии. Проект планируется реализовывать на самой крупной отмели Северного моря Доггер-банка (в 100 километрах от восточного побережья Англии), так как здесь удачно сочетаются следующие факторы: относительно низкий уровень моря и мощные потоки воздуха. Остров площадью в шесть квадратных километров будет оборудован ветряными фермами с тысячами мельниц, также там будут построены взлетно-посадочная полоса и порт. Главная инновация данного строительства заключается в концентрации на максимально низкой стоимости транзита энергии. Основной целью проекта является создание ветропарка, который может вырабатывать до 30 Гвт дешевой электроэнергии. Долгосрочные планы предполагают увеличение этого количества до 70-100 Гвт, что позволит обеспечивать энергией около 80 миллионов жителей Европы, в том числе Германии, Нидерландов и Дании. [17]

    Офшорная ветроэнергетика

    Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Также оффшорная электростанция включает распределительные подстанции и подводные кабели до побережья.

    Помимо свай для фиксации турбин могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

    5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.[18]

    Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика является одним из наиболее дорогих источников электричества. Стоимость производства электричества на офшорных ветроэлектростанциях колеблется от 200 до 125 долларов США / МВт*ч. MHI-Vestas, Siemens и DONG Energy подписали соглашение, в соответствии с которым компании стремятся снизить к 2020 году стоимость офшорного электричества ниже 120 долларов США / МВт*ч.

    Статистика по использованию энергии ветра

    К началу 2015 года общая установленная мощность всех ветрогенераторов составила 369 гигаватт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ[19].

    Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов[20][21].

    В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.

    Суммарные установленные мощности, МВт по данным WWEA. 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227 282400 318529

    В 2014 году 39 % электроэнергии в Дании вырабатывалось из энергии ветра.

    В 2014 году ветряные электростанции Германии произвели 8,6 % от всей произведённой в Германии электроэнергии.

    В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % электроэнергии страны. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.[22]

    В декабре 2014 года ветроэнергетика обеспечила 164 % электричества, потребляемого домохозяйствами Шотландии[23]. 28 октября 2013 ветрогенераторы Дании произвели 122 процента от потребляемого электричества[24]. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии[25]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны[26].

    Перспективы

    Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

    Германия планирует к 2025 году производить 40-45 % электроэнергии из возобновляемых источников энергии. Ранее Германия устанавливала цель 12 % электричества к 2010 году. Эта цель была достигнута в 2007 году.

    Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики[27].

    Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6000 МВт — офшорных[28].

    В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которую выработают ветряные электростанции, составит 494,7 Тв-ч.[29][30].

    В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году[31]. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 ГВт установленной мощности уже в 2010 году.[32]

    Индия планировала к 2012 году увеличить свои ветряные мощности в 2 раза (на 6 тысяч МВт) в сравнении с 2008 годом[33]. Эта цель была достигнута.

    Венесуэла за 5 лет с 2010 года намеревалась построить ветряных электростанций на 1500 МВт.[34]. Цель не была достигнута.

    Экономические аспекты ветроэнергетики

    Лопасти ветрогенератора на строительной площадке.

    Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).

    Экономия топлива

    Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

    Себестоимость электроэнергии

    Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра[35].

    Скорость ветра Себестоимость (для США, 2004 год)
    7,16 м/c 4,8 цента/кВт·ч;
    8,08 м/с 3,6 цента/кВт·ч;
    9,32 м/с 2,6 цента/кВт·ч.

    Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 9 — 30 цента/кВт·ч. Средняя стоимость электричества в Китае 13 цента/кВт·ч.

    При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

    В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

    Экономика ветроэнергетики в России

    Солнечный ветрогенератор для уличного освещения

    В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 2005 дней], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы — их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология — сочетание в одном устройстве генераторов двух видов — вертикального ветрогенератора и солнечных батарей. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 1946 дней], пункты наблюдения, погодные и метеостанции и так далее).

    Другие экономические проблемы

    Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

    Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

    По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

    Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

    Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

    Экономика малой ветроэнергетики

    В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

    • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора впараллель)
    • Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
    • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

    В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

    Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

    • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
    • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
    • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

    В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

    • Отопление является основным энергопотребителем любого дома в России.
    • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
    • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
    • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
    • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

    Экологические аспекты ветроэнергетики

    Выбросы в атмосферу

    Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота[36].

    По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн[37].

    Влияние на климат

    Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее[38][39].

    Согласно моделированию Стэндфордского университета, большие оффшорные ветроэлектростанции могут существенно ослабить ураганы, уменьшая экономический ущерб от их воздействия[40].

    Шум

    Ветряные энергетические установки производят две разновидности шума:

    • механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
    • аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

    В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

    Источник шума Уровень шума, дБ
    Болевой порог человеческого слуха 120
    Шум турбин реактивного двигателя на удалении 250 м 105
    Шум от отбойного молотка в 7 м 95
    Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
    Шумовой фон в офисе 60
    Шум от легковой автомашины при скорости 64 км/ч 55
    Шум от ветрогенератора в 350 м 35—45
    Шумовой фон ночью в деревне 20—40

    В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

    Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

    Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

    Низкочастотные вибрации

    Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.[41]

    Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

    Обледенение лопастей

    При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.[42]

    Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

    Визуальное воздействие

    Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

    В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

    Использование земли

    Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью[43], что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

    Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

    Вред, наносимый животным и птицам

    Таблица: Вред, наносимый животным и птицам. Данные AWEA[44].

    Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков[45].

    Использование водных ресурсов

    В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

    Радиопомехи

    Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала[46]. Чем крупнее ветроустановка, тем больше помех она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

    См. также

    Источники

    1. ↑ http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf
    2. ↑ Bernard Chabot Analysis of the Global Electricity Production up to 2014
    3. ↑ REN21: Renewables Global Status Report 2015
    4. ↑ http://www.gwec.net/gwec-lauds-1-1-million-workers-in-wind/
    5. ↑ Владимир Сидорович. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир. — М.: Альпина Паблишер, 2015. — 208 с. — ISBN 978-5-9614-5249-5.
    6. ↑ Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications. eirgrid.com (February 2004). Проверено 22 ноября 2010. Архивировано 25 августа 2011 года.
    7. ↑ "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано 25 августа 2011 года.
    8. ↑ Claverton-Energy.com (28 августа 2009). Проверено 29 августа 2010. Архивировано 25 августа 2011 года.
    9. ↑ 1 2 Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7.
    10. ↑ Использование энергии ветра в СССР // Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. — С. 7.
    11. ↑ 1 2 Энергетический портал. Вопросы производства, сохранения и переработки энергии
    12. ↑ http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
    13. ↑ http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
    14. ↑ http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
    15. ↑ http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
    16. ↑ Edward Milford BTM Wind Market Report 20 Июль 2010 г.
    17. ↑ Германия участвует в создании острова, Germania.one.
    18. ↑ Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 17 февраля 2018.
    19. ↑ Annual installed global capacity 1996—2011
    20. ↑ US and China in race to the top of global wind industry
    21. ↑ https://web.archive.org/web/20100215003032/http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
    22. ↑ БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
    23. ↑ 2014 a «massive year» for wind and solar power in Scotland — new data published — WWF UK
    24. ↑ Postcard From the Grid’s Future: Record-Breaking Wind Integration in Denmark : Greentech Media
    25. ↑ Wind power — clean and reliable
    26. ↑ Испания получила рекордную долю электричества от ветра
    27. ↑ Denmark aims to get 50 % of all electricity from wind power
    28. ↑ John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
    29. ↑ [tt_news=1892&tx_ttnews[backPid]=1&cHash=05ee83819c7f18864985e61c3fd26342 EU will exceed renewable energy goal of 20 percent by 2020] (англ.). Проверено 21 января 2011.
    30. ↑ EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
    31. ↑ Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy», Energy Policy, Vol. 35, Isue 7, July 2007
    32. ↑ China’s Galloping Wind Market (англ.). Проверено 21 января 2011.
    33. ↑ India to add 6,000 MW wind power by 2012 (англ.). Проверено 21 января 2011. Архивировано 25 августа 2011 года.
    34. ↑ Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
    35. ↑ American Wind Energy Association. The Economics of Wind Energy
    36. ↑ Wind Energy and Wildlife: The Three C’s
    37. ↑ Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
    38. ↑ D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2004. — Iss. 46.
    39. ↑ Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal. — 2009. — Iss. 1.
    40. ↑ Offshore wind farms could tame hurricanes, Stanford-led study says
    41. ↑ https://web.archive.org/web/20071012073209/http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
    42. ↑ Wind Energy in Cold Climates
    43. ↑ Wind energy Frequently Asked Questions Архивировано 19 апреля 2006 года.
    44. ↑ Энергия ветра: мифы против фактов
    45. ↑ MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
    46. ↑ Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

    Литература

    • Д. де Рензо, В. В. Зубарев Ветроэнергетика. Москва. Энергоатомиздат, 1982
    • Е. М. Фатеев Вопросы ветроэнергетики. Сборник статей. Издательство АН СССР, 1959

    Ссылки

    Отрасли промышленности

    www.gpedia.com

    Ресурсы и потенциал ветровой энергетики

    Энергию ветра, человек начал использовать в далеком прошлом. Это были ветряные мельницы, построенные в Персии в 200-х годах до н. э. и предназначенные для размола зерна.

    Первая ветро-электростанция была построена еще в 1931 году в Ялте и развивала мощность до 100 кВт.

    Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырёхлопастные роторы диаметром 23 м.

    Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 м. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.

    В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра.

    В настоящее время ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,66 ГВт.

    Принцип работы ветро-электростанции.

    Ресурсов ветра достаточно, чтобы многократно удовлетворять потребности человечества в энергии.

    Атмосферные турбины, вращающиеся под воздействием постоянных и быстрых потоков ветра, дующих на больших высотах, могут вырабатывать больше энергии, чем наземные и шельфовые турбины. В новом исследовании Кена Калдейры (Ken Caldeira) из Университета Карнеги приводится оценка максимального количества энергии, которое может быть выработано ветрогенераторами, а также рассматривается воздействие высотного сбора энергии на климат Земли.

    Команда ученых из Ливерморской национальной лаборатории во главе с Кейт Марвел (Kate Marvel), начинавшей эти исследования в Университете Карнеги, использовала моделирование для количественного определения электроэнергии, вырабатываемой как с помощью приповерхностных, так и атмосферных ветров, дующих на больших высотах. К приповерхностным ветрам ученые отнесли те потоки воздуха, которые доступны для турбин, находящихся на земле или на морском шельфе. Высотными считаются такие ветры, доступ к которым может быть получен с помощью технологии объединения турбин и воздушных змеев. В исследовании рассматривались лишь геофизические ограничения таких технологий, технические или экономические факторы в расчет не принимались.

    Схема ветрогенератора.

    Турбины препятствуют перемещению воздуха, создавая сопротивление, снижающее движущую силу ветра, что приводит к его замедлению. При увеличении количества ветрогенераторов количество вырабатываемой электроэнергии также увеличивается. Но в какой-то момент ветры станут замедлены на столько, что добавление новых генераторов не приведет к росту выработки энергии. Исследование было сосредоточено на поиске точки, в которой количество вырабатываемой энергии максимально.

    Используя модели, исследователи смогли определить, что с помощью наземных турбин можно получить более 400 ТВт энергии, а за счет высотных потоков воздуха – более 1800 ТВт.

    Сегодня человечество потребляет около 18 ТВт энергии. Ветры, дующие у поверхности Земли, могут двадцатикратно удовлетворить наши потребности в энергии, а атмосферные потоки – стократно.

    При максимальных уровнях извлечения энергии ветра последствия для климата могли бы быть весьма пагубными. Однако, как показали исследования, при сегодняшнем уровне потребности в энергии влияние ветрогенераторов будет незначительным, тем более, при равномерном распределении турбин по поверхности Земли, а не сосредоточении их в нескольких отдельных регионах. При этом температура может измениться всего на 0,1°С, а влияние на осадки будет в пределах 1%. В целом воздействие на окружающую среду не будет существенным.

    Схема устройства простого ветрогенератора.

    Но, по мнению Калдейры, рост ветроэнергетики во всем мире будут, скорее всего, определять не геофизические ограничения, а технологические и политические факторы.

    Разработанные NASA воздушные ветроэнергетические системы эффективнее традиционных турбин.

    Ветряные турбогенераторы, устанавливаемые на земле, на сегодня представляют собой «золотой стандарт» ветроэнергетики. Но инженеры NASA работают над уникальной альтернативой – воздушными ветроэнергетическими системами. NASA делает упор на 2 основных элемента новой технологии – набор вырабатывающих электричество турбин, установленных на воздушном змее, и наземный генератор, соединенный с воздушным змеем и получающий энергию за счет его вращательных движений, когда тот ловит ветер.

    Как сообщается, КПД такой воздушной системы достигает 90% благодаря вращательной фазе змея, которая использует на 10% меньше энергии. Другой ключевой особенностью новой системы является то, что лопасти турбины вращаются быстрее и удалены на большее расстояние от своего центра, что позволяет вырабатывать электроэнергию в большем количестве. В составе системы также имеется программное обеспечение распознавания движений наподобие Kinect компании Microsoft, которое может определять положение воздушного змея в пространстве, а также направление его движения и скорость.

    Кроме того, имеется система управления полетом, позволяющая воздушному змею описывать «восьмерку». Прототип змея, над усовершенствованием которого работает NASA, имеет размах крыльев 10 футов (примерно 3 м). Также в NASA запросили разрешение на испытание системы на высоте 2000 футов (примерно 610 м), которая, как предполагается, является идеальной для работы воздушных ветроэнергетических систем. В NASA планируют использовать такую систему в будущем, и не только на Земле, но и на Марсе и других планетах.

    http://fazaa.ru/youtu.be/AaNujMyikH0

    Ветроэнергетика в России

    В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л.с., 8 л.с. до 45 л.с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор.

    Принцип работы ветряной турбины.

    Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

    Энергетические ветровые зоны в России расположены в основном на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

    Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30% экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16% — в Западной и Восточной Сибири.

    http://fazaa.ru/youtu.be/FFYALflsINA

    Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

    Поделитесь полезной статьей:

    Top

    fazaa.ru


    Смотрите также